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Abstract

Background: The ability to estimate the evolutionary distance between extant genomes plays a crucial role in many
phylogenomic studies. Often such estimation is based on the parsimony assumption, implying that the distance
between two genomes can be estimated as the rearrangement distance equal the minimal number of genome
rearrangements required to transform one genome into the other. However, in reality the parsimony assumption may
not always hold, emphasizing the need for estimation that does not rely on the rearrangement distance. The distance
that accounts for the actual (rather than minimal) number of rearrangements between two genomes is often referred
to as the true evolutionary distance. While there exists a method for the true evolutionary distance estimation, it
however assumes that genomes can be broken by rearrangements equally likely at any position in the course of
evolution. This assumption, known as the random breakagemodel, has recently been refuted in favor of the more
rigorous fragile breakagemodel postulating that only certain “fragile” genomic regions are prone to rearrangements.

Results: We propose a new method for estimating the true evolutionary distance between two genomes under the
fragile breakage model. We evaluate the proposed method on simulated genomes, which show its high accuracy. We
further apply the proposed method for estimation of evolutionary distances within a set of five yeast genomes and a
set of two fish genomes.

Conclusions: The true evolutionary distances between the five yeast genomes estimated with the proposed method
reveals that some pairs of yeast genomes violate the parsimony assumption. The proposed method further
demonstrates that the rearrangement distance between the two fish genomes underestimates their evolutionary
distance by about 20%. These results demonstrate how drastically the two distances can differ and justify the use of
true evolutionary distance in phylogenomic studies.

Keywords: Genome rearrangements, Evolutionary distance, Chromosomal evolution, DCJ, Fragile breakage model,
Random breakage model

Background
Genome rearrangements are evolutionary events that
shuffle genomic architectures. Most frequent genome
rearrangements are reversals (that flip segments of a chro-
mosome), translocations (that exchange segments of two
chromosomes), fusions (that merge two chromosomes
into one), and fissions (that split a single chromosome
into two). These four types of rearrangements can be

*Correspondence: nikita.v.alexeev@gmail.com
Computational Biology Institute at the George Washington University, 20147
Ashburn, VA, USA

modeled by Double-Cut-and-Join (DCJ) operations [1],
which break a genome at two positions and glue the
resulting fragments in a new order.
The ability to estimate the evolutionary distance

between extant genomes plays a crucial role in many
phylogenomic studies. Often such estimation is based
on the parsimony assumption, implying that the distance
between two genomes can be estimated as the rearrange-
ment distance equal the minimal number of genome rear-
rangements required to transform one genome into the
other. However, in reality the parsimony assumption may
not always hold, emphasizing the need for estimation that
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does not rely on the (minimal) rearrangement distance.
The evolutionary distance that accounts for the actual
(rather thanminimal) number of rearrangements between
two genomes is often referred to as the true evolutionary
distance.
While there exists a method for estimation of the true

evolutionary distance [2], it however implicitly assumes
that genomes can be broken by rearrangements equally
likely at any position in the course of evolution. This
assumption, known as the random breakage model (RBM)
of chromosome evolution [3, 4], has been refuted in favor
of the more rigorous fragile breakage model (FBM) [5]
postulating that only certain “fragile” genomic regions are
prone to rearrangements. The FBM is supported by many
recent studies of various genomes (e.g., see references in
[6]). The RBM can be viewed as an extremal case of the
FBM, where every genomic region is fragile.
In the current study, we propose a new method for esti-

mating the evolutionary distance between two genomes
with high accuracy under the FBM. We assume that the
given genomes are represented as sequences of the same
blocks (synteny blocks or orthologous genes) and evolved
from a common ancestral genome with a number of DCJs.
Our method estimates the total number of DCJs on the
evolutionary path between such genomes. The results of
using our method on a simulated dataset show a high level
of precision. We also analyze yeast genome data and show
that some, but not all pairs of yeast genomes fall under the
parsimony assumption.
The subtle difference between the RBM and FBM from

the perspective of true evolutionary distance estimation
is the (in)ability to count the number of fragile genomic
regions. While breakpoints (block adjacencies present in
one genome and absent in the other) definitely represent
fragile regions, the shared block adjacencies are treated
differently under the two models. Namely, under the RBM
a shared block adjacency still represents a fragile region,
which just happened to remain conserved across the two
genomes by chance. Under the FBM, a shared block adja-
cency may or may not be fragile.

Methods
Breakpoint graphs and DCJs
We start our analysis with circular genomes (i.e., genomes
with circular chromosomes) and address linear genomes
later. We represent a genome with n blocks as a genome
graph composed of n directed block edges encoding blocks
and their strands, and n undirected adjacency edges
encoding adjacencies between blocks.
Let P and Q be genomes on the same set of blocks. We

assume that in their genome graphs, the adjacency edges
of P are colored black (Fig. 1a) and the adjacency edges of
Q are colored red (Fig. 1b). The breakpoint graph G(P,Q)

is the superposition of the genome graphs of P andQ with

a b

c

Fig. 1 a Genome graph of unichromosomal genome P=(0,1,2, 3, 4,5)
with adjacency edges colored black. b Genome graph of unichromosomal
genome Q = (0,−2,−1, 3,−5,−4) with adjacency edges colored
red. c The breakpoint graph G(P,Q) of genomes P and Q represents a
collection of black-red cycles

the block edges removed (Fig. 1c). The black and red adja-
cency edges in G(P,Q) form a collection of alternating
black-red cycles.
We say that a black-red cycle is an �-cycle if it contains

� black edges (and � red edges) and let c�(P,Q) be the
number of �-cycles inG(P,Q). We refer to 1-cycles as triv-
ial1 and to the other cycles as non-trivial. The vertices of
non-trivial cycles are called breakpoints.
A DCJ in genome Q replaces any pair of red adjacency

edges {x, y}, {u, v}with either a pair of edges {x,u}, {y, v} or
a pair of edges {u, y}, {v, x}. We say that such a DCJ oper-
ates on the edges {x, y}, {u, v} and their endpoints x, y,u, v.
A DCJ in genome Q transforming it into a genome Q′
corresponds to a transformation of the breakpoint graph
G(P,Q) into the breakpoint graph G(P,Q′) (Fig. 2). Each

Fig. 2 A DCJ in genome Q replaces a pair of red edges in the
breakpoint G(P,Q) with another pair of red edges forming matching
on the same 4 vertices



The Author(s) BMCGenomics 2017, 18(Suppl 4):356 Page 21 of 55

DCJ in the breakpoint graph can merge two black-red
cycles into one (if edges {x, y}, {u, v} belong to distinct
cycles), split one cycle into two or keep the number of
cycles intact (if edges {x, y}, {u, v} belong to the same
cycle). The DCJ distance between genomes P and Q is
the minimum number of DCJs required to transform Q
into P. It can be evaluated as d(P,Q) = b(P,Q) − c(P,Q),
where b(P,Q) = ∑

�≥2 � · c�(P,Q) is half the number of
breakpoints and c(P,Q) = ∑

�≥2 c�(P,Q) is the number of
non-trivial cycles in the breakpoint graph G(P,Q) [1].

Evolutionary model
To estimate the true evolutionary distance between
genomes P and Q on the same set of blocks, we view
the evolution between them as a discrete Markov pro-
cess that transforms genome P into genome Q with a
sequence of DCJs occurring independently. The process
starts at genome X = P and ends at X = Q, and cor-
responds to a transformation of the breakpoint graphs
starting atG(P,P) (formed by a collection of trivial cycles)
and ending at G(P,Q). The number of DCJs k in this
transformation represents the true evolutionary distance
between genomes P and Q.
We remark that under the FBM, the number of triv-

ial cycles (if any) in G(P,Q) is an obscure parameter,
since they may correspond to solid (non-fragile) regions
as well as to fragile regions that just happen to remain
conserved (in both P and Q) by chance.2 Furthermore,
there may exist such conserved fragile regions within the
blocks forming P and Q and thus such regions cannot
be observed in G(P,Q). To account for all these possibil-
ities, we assume that P and Q are composed of a large
unknown number n of solid regions interspersed with the
same number of fragile regions, some of which remain
conserved by chance. In other words, we assume that the
given blocks of genomes P andQ are formed by (invisible)
solid regions and conserved fragile regions. Let Pn and Qn
denote these representations of P and Q as sequences of
the solid regions. We view genome Qn as obtained from
Pn with a sequence of k DCJs each operating on two ran-
domly selected fragile regions (i.e., adjacencies between
solid regions).
The crucial observation is that while we do not know the

number n of solid regions, the breakpoint graphs G(P,Q)

and G(Pn,Qn) have the same cycle structure, except for
trivial cycles. That is, we have c�(Pn,Qn) = c�(P,Q) for
every � ≥ 2, implying, in particular, that b(Pn,Qn) =
b(P,Q), c(Pn,Qn) = c(P,Q), and d(Pn,Qn) = d(P,Q).
Indeed, if genomes P′ and Q′ are obtained from P and Q
by replacing a single block a with two consecutive smaller
blocks a1, a2, thenG(P′,Q′) can be obtained fromG(P,Q)

by adding one trivial cycle (corresponding to the shared
adjacency a1, a2). Since the genomes Pn and Qn can be
obtained from P and Q with a number of such operations,

the breakpoint graphs G(P,Q) and G(Pn,Qn) may differ
only in the number of trivial cycles.3
In our evolutionary model, the following parameters are

observable:

• c� = c�(Pn,Qn) = c�(P,Q) for any � ≥ 2, i.e., the
number of �-cycles in G(P,Q);

• b = b(Pn,Qn) = b(P,Q) = ∑
�≥2 � · c�, the number

of broken fragile regions between P and Q, which is
also the number of synteny blocks between P and Q,
or half of the total length of all non-trivial cycles in
G(P,Q);

• d = d(Pn,Qn) = d(P,Q) = b − ∑
�≥2 c�, the DCJ

distance between P and Q;

while the following parameters are hidden:

• c1 = c1(Pn,Qn), the number of trivial cycles in
G(Pn,Qn);

• n = n(P) = n(Q), the number of fragile regions in
each of genomes P and Q, half the total length of all
cycles in G(Pn,Qn);

• k = k(P,Q), the number of DCJs in the Markov
process, the true evolutionary distance between P
and Q.

Extension to linear genomes
To analyze linear genomes, we add one artificial adjacency
between telomeres for each chromosome and consider the
resulting circular genomes. Since the number of chromo-
somes is often negligible as compared to the number of
fragile regions (for example, in the yeast genomes that we
analyze in the Discussion section, the number of chro-
mosomes ranges between 6 and 8, while the number of
fragile regions is at least 710), these artificial edges do not
significantly affect the estimation.We refer to [7] for a dis-
cussion of subtle differences in the analysis of circular and
linear genomes.

Results
We propose a newmethod for estimating the evolutionary
distance between two genomes with high accuracy under
the FBM. A key component of our method is the analyti-
cal estimation of c� for various � ≥ 2 in terms of k and n,
which we describe in the Theoretical analysis subsection
below. From this estimation, in the Estimation algorithm
subsection we solve the inverse problem to find the true
evolutionary distance k (which is our goal) and the num-
ber of fragile regions n (as a by-product). In our analysis,
we consider only relatively small � and assume that n and
k are sufficiently large (see Theorem 1).

Theoretical analysis
Theorem 1 Let genome Pn be a genome with n fragile

regions and genome Qn be obtained from Pn with k =
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�γn/2� randomDCJs for some γ > 0. Then, for any fixed �,
the proportion of edges that belong to �-cycles in G(Pn,Qn)
is

�c�
n

= e−γ � (γ �)�−1

�!
+ Op

(
1√
n

)

as n → ∞ ,

where Op
(

1√
n

)
denotes a term stochastically bounded4.

To prove Theorem 1, we will need some lemmas.
Let us consider a sequence D of k random DCJs trans-

forming the graph G(Pn,Pn) into the graph G(Pn,Qn).
Each DCJ in D either merges two cycles (merging DCJ),
splits one cycle into two (splitting DCJ), or preserves the
cycle structure (preserving DCJ). We call set of � black
edges proper for the transformationD if in the breakpoint
graph G(Pn,Qn) these edges form an �-cycle resulted
entirely from � − 1 merging DCJs. We remark that each
�-cycle in G(Pn,Qn) is a result of � − 1 merging DCJs (we
denote the number of such cycles by c̃�) or is formed with
at least one splitting or preserving DCJ. The following
lemmas provide an asymptotic for c̃� and an upper bound
for c� − c̃�.

Lemma 1 The mean value of c̃� has the following
asymptotic:

E (c̃�) = n
�
e−γ � (γ �)�−1

�!
+ O(1).

Proof Let us fix a set A of � black edges and find the
probability that A is proper for D. We remark that this
probability does not depend on the content of A but only
on its size |A| = �, and denote it by p̃n,k,�. There are
2�−1(� − 1)! ways to arrange � black edges into an �-cycle,
since there exist (� − 1)! circular permutations of length �

and 2�−1 ways to assign directions to their elements. For
any �-cycle, there are ��−2 ways to obtain it as a result of
� − 1 DCJs [8].
We represent D as the union S ∪ S̄ , where the subse-

quence S contains � − 1 DCJs connecting edges from A
into an �-cycle, and the subsequence S̄ contains the rest
of the DCJs. Since |D| = k and |S| = � − 1, there are( k
�−1

)
ways to choose positions for elements of S inD. The

k − � + 1 DCJs from S̄ operate on the n− � red edges that
are not incident to any black edge from A, and for each
pair of red edges there are two possible ways to recombine
them with a DCJ. This gives

2k−�+1
(
n − �

2

)k−�+1

possible subsequences S̄ . So, there are

2�−1(� − 1)! ��−2
(

k
� − 1

)

2k−�+1
(
n − �

2

)k−�+1

transformations D such that A is proper for D. The total
number of k-step transformations is equal to 2k

(n
2
)k . Then

the probability p̃n,k,� can be found as follows

p̃n,k,� = ��−2(� − 1)!
( k
�−1

)(n−�
2

)k−�+1

(n
2
)k . (1)

Since there are
(n
�

)
ways to choose the set A of black

edges, the average number E(c̃�) of �-cycles obtained by
only merging DCJs equals

(
n
�

)

p̃n,k,� = ��−2(� − 1)!
(
n
�

)(
k

� − 1

)

·
(n−�

2
)k−�+1

(n
2
)k

= ��−2(� − 1)!
n�

�!
· k�−1

(� − 1)!
(n − �)2(k−�+1)

2k−�+1

× 2k

n2k
+ O(1)

= ��−2k�−1 · n
�

�!
· 2�−1

n2�−2

(

1 − �

n

)2(k−�+1)

+ O(1)

=
(
2k�
n

)�−1 n
�

· 1
�!
e−γ � + O(1)

= n
�
e−γ � (γ �)�−1

�!
+ O(1) .

(2)

Lemma 2 The variance of c̃� is bounded: Var (c̃�) =
O(n).

Proof For a transformationD and a set A of black edges,
we define a random variable XA:

XA =
{
1, if A is proper forD,
0, otherwise.

By definition, c̃� = ∑
A XA, where the sum is taken over all

possible sets of � black edges. The variance of c̃� is equal to

E
(
c̃2�

) − E (c̃�)2 .

Since

E
(
c̃2�

) =
∑

A

∑

B
E (XAXB) ,

we will find E (XAXB) for each pair A,B of sets of � black
edges:

E (XAXB) =
⎧
⎨

⎩

p̃n,k,�, if A = B ,
p̃n,k,� · p̃n−�,k−�+1,�, if A ∩ B = ∅ ,
0, otherwise,



The Author(s) BMCGenomics 2017, 18(Suppl 4):356 Page 23 of 55

where p̃n,k,� is defined by (1). This implies

E
(
c̃2�

) =
(
n
�

)

p̃n,k,� +
(
n
�

)(
n − �

�

)

p̃n,k,� · p̃n−�,k−�+1,� .

Finally, using (2), we obtain

Var (c̃�) =
(
n
�

)

p̃n,k,� +
(
n
�

)(
n − �

�

)

p̃n,k,� · p̃n−�,k−�+1,� − E (c̃�)2

=
(
n
�

)

p̃n,k,�
(

1 +
(
n − �

�

)

p̃n−�,k−�+1,� −
(
n
�

)

p̃n,k,�
)

=
(
n
�
e−γ � (γ �)�−1

�!
+ O(1)

) (

1 + n − �

�
e−γ � (γ �)�−1

�!

−n
�
e−γ � (γ �)�−1

�!
+ O(1)

)

=
(
n
�
e−γ � (γ �)�−1

�!
+ O(1)

) (

1 − e−γ � (γ �)�−1

�!
+ O(1)

)

= O(n).

For a positive integer M, we call a splitting DCJ M-
splitting, if it splits some m-cycle into an i-cycle and an
(m − i)-cycle for some i ≤ M. Similarly, we call a pre-
serving DCJ M-preserving if it operates on an m-cycle for
somem ≤ M.

Lemma 3 Let M be any positive integer. Then (i) the
number of M-splitting DCJs in D is stochastically dom-
inated by a Poisson random variable with parameter
γM/2; (ii) the number of M-preserving DCJs in D is
stochastically dominated by a Poisson random variable
with parameter γM2/4.

Proof To prove (i), we notice that the probability that a
DCJ from D splits a fixed m-cycle into an i-cycle and an
(m− i)-cycle is m

n(n−1) (if i = m/2) or m
2n(n−1) (if i = m/2).

The probability that a DCJ splits a cycle into an i-cycle
with i ≤ M and another cycle can be bounded by

M∑

i=1

∑

m>i

m
n(n − 1)

cm ≤ M
n − 1

.

This bound implies that a number of M-splitting DCJs
inD is stochastically dominated by the random variable Y
that equals j with the probability:
(
k
j

) (
M

n − 1

)j (

1 − M
n − 1

)k−j
= e−γM/2 (γM/2)j

j!
+o(1) .

Since e−γM/2 (γM/2)j
j! represents the probability that a

Poisson random variable with parameter γM/2 is equal to
j, the proof of (i) is completed.
To prove (ii), we notice that the probability that a DCJ

from D operates on two red edges from the fixedm-cycle
and does not split this cycle equals m(m−1)

2n(n−1) . Summing over

all m ≤ M, we bound the probability that a fixed DCJ is
M-preserving as

∑

m≤M

m2

2n(n − 1)
cm ≤ M2

2(n − 1)

and the proof is completed similarly to the proof of (i)
above.

Now we can prove Theorem 1.

Proof Lemma 3 implies that c� − c̃�, the number of �-
cycles obtained with at least one splitting or preserving
DCJ, is of order O(1). Indeed, each such �-cycle uniquely
determines the last splitting or preserving DCJ that partic-
ipates in the formation of this cycle (i.e., operates on some
of the cycle vertices). Clearly, this last splitting (resp. pre-
serving) DCJ is �-splitting (resp. �-preserving). Since such
last DCJ correspond to at most two cycles, it follows that
the number c�− c̃� does not exceed twice the number of �-
splitting and �-preserving DCJs. By Lemma 3, the number
of �-splitting and �-preserving DCJs is bounded (stochas-
tically dominated by a Poisson random variable), we have
c� − c̃� = O(1).
Since by Lemmas 1 and 2, the number c̃� has the mean

value n
�
e−γ � (γ �)�−1

�! + O(1) and the standard deviation of
order O(

√
n). The fraction of edges in �-cycles is �c�

n .
Applying Chebyshev’s inequality we obtain:

�c�
n

= e−γ � (γ �)�−1

�!
+ Op

(
1√
n

)

,

which completes the proof.

We remark that for γ < 1, the sequence

p� = e−γ � (γ �)�−1

�!
, � = 1, 2, . . .

defines a probability mass function, which characterizes a
Borel distribution [9]. So, if γ < 1, for a randomly cho-
sen edge, the length of the cycle that contains it follows a
Borel distribution with parameter γ . Moreover, the results
of Erdös and Rényi [10] imply that

1 −
∞∑

�=1
e−γ � (γ �)�−1

� · �!
= γ

2
,

which can also be seen empirically in Fig. 3. It follows that
for γ < 1, d = k(1 + o(1)) and the DCJ distance closely
approximates the true distance. While d = k corresponds
to the parsimony assumption, we say that the process is in
the parsimony phase as soon as γ < 1.
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Fig. 3 Empirical and analytical curves for the fraction d
n as a function

of γ

From Theorem 1, we have

Corollary 1

b
n

= 1 − e−γ + op(1) .

Proof Indeed, b = n − c1 and c1
n = e−γ + op (1) .

Corollary 2

d
n

= 1 −
∞∑

�=1

p�

�
+ op(1) .

Proof By definition,

d = b −
∞∑

�=2
c� = n −

∞∑

�=1
c� .

For any fixedM, the number ofm-cycles, wherem > M,
is bounded by n

M . By Theorem 1, for any fixed �, we have
c�
n = p�

�
+ ξ�√

n , where ξ� is some random variable with
E(ξ�) = 0 and Var(ξ�) < 1. Hence, for any fixed M we
have:

1
n

∞∑

�=1
c� = 1

n

M∑

�=1
c�+1

n

∞∑

�=M+1
c� ≤

M∑

�=1

(
p�

�
+ ξ�√

n

)

+ 1
M

.

Let η = 1
M

∑M
�=1 ξ�, then

1
n

∞∑

�=1
c� ≤

M∑

�=1

p�

�
+ Mη√

n
+ 1

M
.

From the definition of η it follows that the random vari-
able η has the mean value E(η) = 0 and the variance
Var(η) < 1. Let

r(m) =
∞∑

�=m+1

p�

�
,

so that r(0) = ∑∞
�=1

p�

�
. Then

1
n

∞∑

�=1
c� − r(0) ≤ 1

M
− r(M) + Mη√

n
.

The lower bound is obvious

1
n

∞∑

�=1
c� − r(0) ≥ −r(M) + Mη√

n
.

Since the series
∑∞

�=1
p�

�
converges, for each ε > 0 one

can chooseM and then choose n in such a way that

−ε ≤ 1
n

∞∑

�=1
c� − r(0) ≤ ε(1 + η) .

The estimations given in Corollaries 1 and 2 are very
precise, as shown in Figs. 4 and 3. All the simulations are
performed for n = 1000 (see Discussion).

Estimation algorithm
From Corollaries 1 and 2, we obtain the following approx-
imation for the ratio d

b :

d
b

≈ 1 − ∑∞
�=1 e−γ � (γ �)�−1

�·�!
1 − e−γ

, (3)

Fig. 4 Empirical and analytical curves for the fraction b
n as a function

of γ
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and then estimate γ with the bisection method. The plot
of d

b as a function of γ is shown in Fig. 5. As one can
see, this function is increasing, and each value of d

b in
the interval [ 0.5, 1] uniquely determines the value of γ .
In particular, γ = 1 corresponds to d

b ≈ 0.79. That is, if
d
b < 0.79, then the process is in the parsimony phase and
the true distance k is accurately approximated by the DCJ
distance d.
Our simulations demonstrate that this estimation

method is robust for γ < 2. For larger values of γ , the
estimator is too sensitive to small random deviations.
Alternatively, the value of γ can be approximated by
b∑m

�=2 �c�
for some m. In our simulations, the best results

were observed form = 6. Again, the function

fm(γ ) = 1 − e−γ

∑m
�=2 e−γ � (γ �)�−1

�!

(4)

is increasing (Fig. 6). The applicability limits for this esti-
mator depend on the value of n. Namely, if

∑m
�=2 �c�

is close to zero, then the estimator becomes sensitive
to small deviations. In our simulations with n = 1000
(see Discussion), the estimator is very precise for values
γ < 2.5 with the relative error below 10% in 95% of
observations.
Once we obtain an estimated value γe for γ , it is easy to

estimate the values of n and k as follows:

ne = b
1 − e−γe

and ke = γe · ne
2

. (5)

We report a value of ke as our estimation for the true
evolutionary distance.

Fig. 5 The ratio d
b as a function of γ

Fig. 6 The plot of function f6(γ ) defined in (4)

Discussion
We evaluated the proposed method on simulated
genomes, and further applied it for estimation of the evo-
lutionary distances within a set of five yeast genomes and
a set of two fish genomes.

Simulated genomes
We performed a simulation with a fixed number of blocks
n = 1000 and various values of γ . In each simulation, we
started with a genome P on n blocks and applied a number
of DCJs, until we reached the upper value of γ (in our case
this upper value is 2.5). We denote the resulting genome
by Q and estimate γ , n, and k from the genomes P and Q.
First we estimate γ by solving the approximate equation

b
2c2 + 3c3 + 4c4 + 5c5 + 6c6

≈ f6(γ ) . (6)

Since the function in the r.h.s. is continuous and increas-
ing, a unique solution exists for any value of the l.h.s. From
the estimated value γe, we compute ne and ke as in (5).
The result of this procedure is shown in Fig. 7 with a

box-plot diagram of relative error ke−k
k of our estimation

for each γ ∈[ 0.6, 2.5] with a step 0.1. As one can see, the
relative error increases with the increase of γ , but even
for large values of γ , the median of the relative error is
small (e.g., for γ = 2.5 the median of the relative error is
only 0.0075); and for all γ , the interquartile range is less
than 0.1.
Instead of having 6 terms in the denominator of (6), one

can take a smaller number m ≥ 2. While the behavior
of the sum with a larger m is more stable generally, our
simulations showed very close results for all m between 2
and 10.
Instead of (6), we also used the approximate Eq. (3),

which involves only two observable parameters: the DCJ
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Fig. 7 The dependency of distribution of the relative error ke−k
k on γ

distance d and half the number of breakpoints b. While
the resulting estimation is quite similar to the previous
one, it is more accurate when γ < 1.6 and less accurate
γ > 2.

Yeast genomes
We analyzed a set of five yeast genomes: A. gossypii, K.
lactis, K. thermotolerans, S. kluyveri, and Z. rouxii, repre-
sented as sequences of the same 710 synteny blocks [11].
For each pair of genomes, we circularized their chromo-
somes, constructed the breakpoint graph, and indepen-
dently estimated the true evolutionary distance between
them. The results in Table 1 demonstrate that some but
not all pairs of yeast genomes fall under the parsimony
phase.

Fish genomes
We also analyzed two fish genomes: Tetraodon
nigroviridis [12] and Gasterosteus aculeatus [13] rep-
resented as sequences of the same 6132 genes. Our
estimation for the true evolutionary distance between
these genomes shows that they do not fall under the
parsimony phase: their rearrangement distance equals
3705, while the true evolutionary distance is about 4500.

Table 1 For each pair of yeast genomes, x : y gives the
estimated true evolutionary distance x and the rearrangement
distance y

K. lactis K. thermotolerans S. kluyveri Z. rouxii

A. gossypii 375 : 359 260 : 249 228 : 217 336 : 319

K. lactis 280 : 272 253 : 240 352 : 344

K. thermotolerans 75 : 75 198 : 198

S. kluyveri 162 : 162

Conclusions
In the current study, we address the problem of estimat-
ing the true evolutionary distance between two genomes
under the fragile breakage model. Similarly to our previ-
ous study on estimation of the proportion of evolutionary
transpositions [14], we model evolution as a sequence of
random DCJs and track how these random DCJs change
the cycle structure of the breakpoint graph. We show that,
while the number of DCJs is less than half the number of
fragile regions in the genome, the parsimony assumption
holds, and in this case we prove that lengths of alternating
cycles are distributed according to a Borel distribution. In
this sense our process in the parsimony phase is closely
related to the evolution of a random Erdös–Rényi graph
[10] in the subcritical regime. A similar process was also
analyzed by Berestycki and Durrett [15]. They studied
the cycle structure of a permutation obtained from the
identity permutation with a sequence of random alge-
braic transpositions. Our results are consistent with their
findings.
We provide estimators for the true evolutionary dis-

tance, which show high accuracy on simulated genomes.
Our analysis of five yeast genomes shows that some but
not all genome pairs fall under the parsimony phase. We
also analyzed two fish genomes and revealed that the rear-
rangement distance between them underestimate the true
evolutionary distance by about 20%. This data show how
drastically the two distances can differ and emphasize the
importance of using the evolutionary (rather than rear-
rangement) distance in comparative genomics. In contrast
to the method of Lin and Moret [2], our method does not
rely on the number of common gene adjacencies across
two given genomes. Since some genes can form con-
served clusters [16], treating all gene adjacencies as fragile
regions can lead to a huge bias in the estimation. Our
estimator is based only on breakpoints (but not on con-
served adjacencies) across two genomes, and so it avoids
this issue.
We further remark that our method is based on accurate

estimation of the ratio d
b . At the same time, in comparative

genomics studies the ratio 2d
b is known as the break-

point reuse rate [5, 17], representing the average number
of breakpoint “uses” by rearrangements in the course of
evolution between two genomes. Our parsimony phase
condition can therefore be restated as the breakpoint
reuse rate being below 1.58. We argue however that the
conventional definition of the breakpoint reuse rate does
not accurately capture its meaning, in the same way how
the rearrangement distance does not quite capture the
meaning of evolutionary distance. This inspires a notion
of the true breakpoint reuse rate defined as 2k

b (i.e., with
the true evolutionary instead of rearrangement distance
in the numerator), which can be easily estimated with our
method.
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In further development of our method, we plan to
address the even more accurate turnover fragile breakage
model [6], where the set of fragile regions changes with
time. We believe this model can better explain the cycle
structure of the breakpoint graphs of real genomes (for
a recent discussion of associated combinatorial aspects,
see [18]).

Endnotes
1 In the breakpoint graph constructed on synteny blocks

of two genomes, there are no trivial cycles since no adja-
cency is shared by both genomes. However, the break-
point graph constructed on orthologous genes or multi-
genome synteny blocks may contain trivial cycles.

2 In contrast, the method of Lin andMoret [2] considers
only the latter option, which corresponds to the RBM.

3 In contrast to c1(Pn,Qn), the value of c1(P,Q) is rather
arbitrary and thus is ignored in our model.

4We remind that a sequence of random variables {Xn} is
stochastically bounded by a deterministic sequence {an},
denoted Xn = Op(an), if for all ε > 0, there exists C such
that for all n, Pr{|Xn/an| > C} < ε. Similarly, Xn = op(an)
if for all C > 0, limn→∞ Pr{|Xn/an| > C} = 0.
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