Prevalence and Genotype Distribution of HPV in Cytology Specimens Containing Atypical **Glandular Cells: A Case Control Study** School of Public Health S. B. Namugenyi, M. J. Balsan, S. N. Glick, J. A. Jordan & Health Services

The George Washington University School of Public Health and Health Sciences, Washington DC

Introduction

- HR-HPV responsible for <u>>99%</u> of all cervical cancer, with HPV 16/18 causing ~70%
- Pap test: Marked decline in the incidence of squamous cell cervical cancers, but incidence of glandular cell cancers has increased^{1, 2}
- Atypical glandular cell (AGC) grade Pap test results are rare (0.2-0.7%) but 38% represent a corresponding high-grade lesion on biopsy^{3, 4}
- AGC management guidelines: Colposcopy, endocervical sampling & HR-HPV DNA testing⁵

Objective

Determine prevalence & genotype distribution of HPV in AGC-grade cytology specimens compared to women whose Pap smears were negative for intraepithial lesion or malignancy (NILM), with ages known for both groups of women.

Methods

- Collected residual, de-identified AGC & NILM cytology specimens
- DNA was extracted using QIAamp MinElute Media Kit and analyzed by PCR using Linear Array HPV Genotyping and Detection Test Kits
- Multivariate logistic regression compared HPV prevalence and genotype distribution between cases and controls to generate age-adjusted odds ratios (ORadj) and 95% confidence intervals (CI)

Results

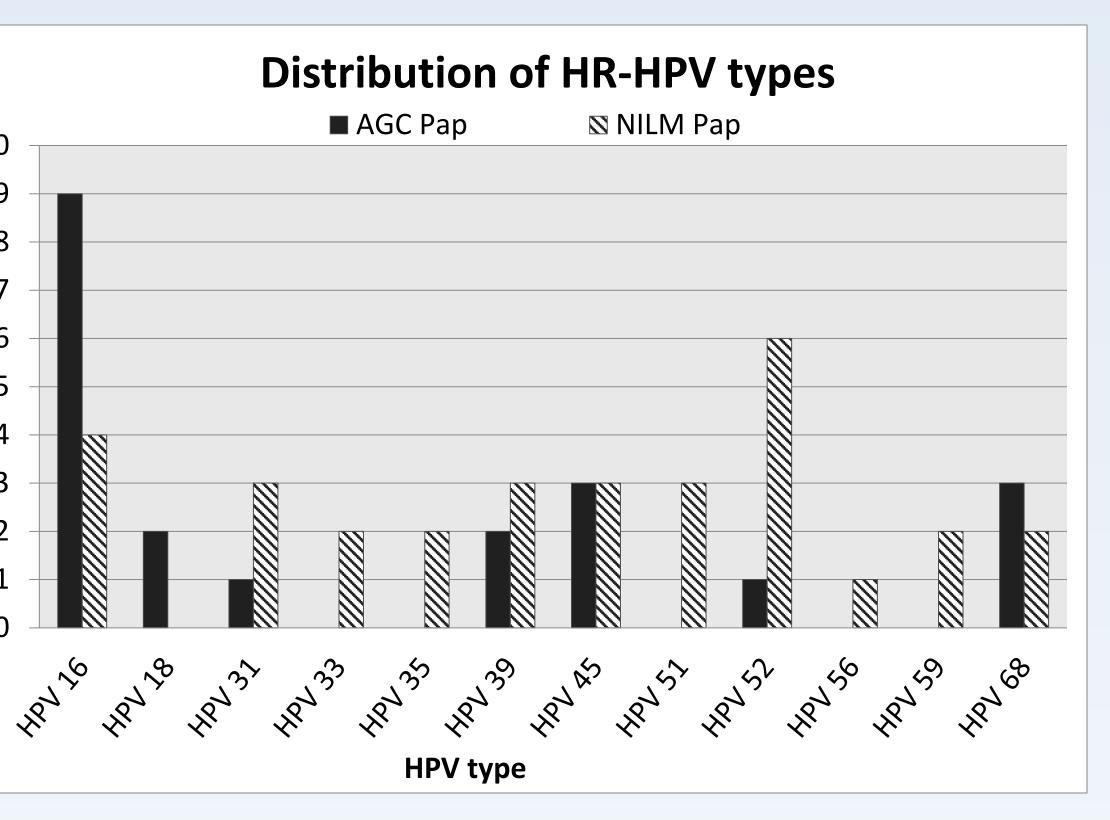
Table 1. Study Sample Description						
	Total number tested	Mean age (yr)	Median age (yr)	Age range (yr)		
AGC-grade cases	53	57	56	18-95		
NILM-grade controls	338	45	43	20-91		

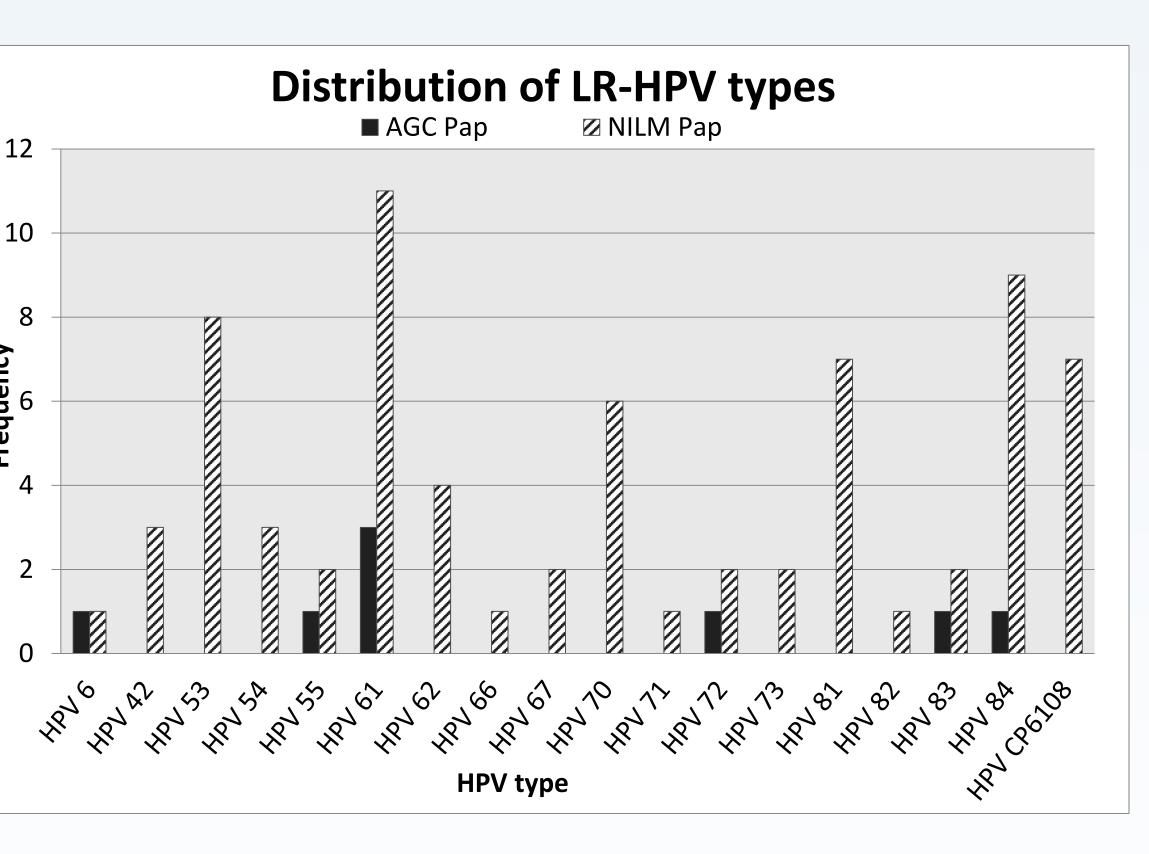
Table 2 A. Percent of specimens containing detectable levels of HR-HPV DNA					
	AGC-grade	NILM-grade			
	cases	controls			
HR-HPV Status *	%	%			
Positive	34	7.4			
Negative	66	92.6			
Total	100	100			

*Regardless of LR- HPV co-infection

Table 2 B. Percent of specimens containing detectable levels of LR-HPV DNA

	AGC-grade	NILM-grade
	cases	controls
LR HPV Status *	%	%
Positive	13.2	17.2
Negative	86.8	82.8
Total	100	100
*Degerdleee of LIC	$D \perp D \setminus a = infa = a$	


*Regardless of HR-HPV co-infection


Table 3. Multivariate age-adjusted logistic regression analysis comparing risk of finding HR-HPV or LR-HPV DNA in AGC-grade cases compared to NILM-grade controls

HPV Type(s)	*ORadj (95% CI)	P value		
Any HR HPV (inc. 16/18)	9.11 (4.08, 20.33)	< 0.001		
HR HPV 16/18 only ⁴	40.10 (10.73, 149.88)	< 0.001		
Any LR HPV	0.91 (0.35, 2.31)	0.834		
* ORadj; adjusted Odds Ratio, 95% Cl; 95% Confidence Interval,				

⁴; Irrespective of other HR HPV or LR HPV types

HR-HPV types: 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, 82 LR-HPV types: 6, 11, 40, 42, 54, 55, 61, 62, 64, 67, 69, 70, 71, 72, 81, 83, 84, IS39, CP6108

1. Lai CR, et al. (2012) Available from: http://www.intechopen.com/books/intraepithelialneoplasia/the-role-of-the-pap-smeardiagnosis-atypicalglandular-cells-agc. pp. 365-380. 2. Smith HO, et al. (2000) Gynecol Oncol 78(2): 97-105. 3. Chen SF, et al. (2005) Gynecol Oncol 99: 578–584. 4. Apgar BS, et al (2009) Am Fam Physician 80(2): 147-155. 5. Wright TC Jr, et al. (2007) Am J Obstet Gynecol 197(4): 346-355.

THE GEORGE WASHINGTON UNIVERSITY

Conclusion

• AGC-grade cases contained a significantly higher rate of HR-HPV, especially HPV types 16/18 when compared to NILM controls

Prevalence of LR-HPV: Not significantly different between cases and controls – suggesting sexual behavior practices similar between both groups e.g. unprotected intercourse

Most cases (78%) and controls (74%) had single infections

When multiple HPV types: More common in AGC cases (5.7%) than NILM controls (0.6%)

Findings support guidelines that HPV testing should be performed on specimens with AGC-grade diagnosis

HPV 16/18 genotyping may be valuable for managing women with AGC-grade Pap test results

References

Funding

Funding provided by Roche Diagnostics