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RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs
fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to
tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The
performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This
study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real
RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of
domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the
important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures
and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity
and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and
Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding.

1. Introduction

RNAs are versatile molecules. Messenger RNAs carry genetic
information and act as the intermediary agent betweenDNAs
and proteins; ribosomal RNAs, transfer RNAs, and other
noncoding RNAs also have important structural, regulatory,
and catalytic functions in cells. To completely understand the
various functions of RNAs, we need to first understand their
structures. The primary structure of RNA is the sequence
of nucleotides (i.e., four bases A,C,G, and U) in the single-
stranded polymer of RNA. However, these sequences are not
simply long strands of nucleotides. In RNA, complementary
bases of guanine and cytosine pair can form three hydrogen
bonds, those of adenine and uracil pair can form two
hydrogen bonds, and those of guanine and uracil pair can
form two hydrogen bonds. RNA folds into a 3D structure
through hydrogen bonding and base stacking, which are
nonconsecutive in the sequence. Noncanonical pairing and

base-to-backbone hydrogen bonding also stabilize folding.
The 3D arrangement of atoms in a folded RNA molecule
is the tertiary structure; the collection of base pairs in the
tertiary structure is the secondary structure. Experimental
determination of RNA tertiary structures is too expensive
and time consuming tomeet practical needs; thus, predicting
RNA structure by computer becomes a basic method and
issue in computational biology [1].

The secondary structures of RNA include the scaffold
of the tertiary structures. Predicting RNA secondary struc-
tures is the first step in predicting RNA tertiary structures
from RNA sequences. Computational approaches for pre-
dicting RNA secondary structures can be classified into
three families: thermodynamic, comparative, and hybrid.
Thermodynamic approaches use dynamic programming to
compute the optimal secondary structure for a single RNA
sequence with globally minimal free energy [2], based on a
set of experimentally determined energy parameters [3]. Such
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methods have been successful for relatively short RNAs.Man-
ually comparative approaches are more reliable than ther-
modynamic approaches when many homologous sequences
are available. Manually comparative approaches have been
used to establish the structures of known RNA families.
These approaches compute a consensus structure on a set of
aligned RNA sequences by searching for covariance evidence
between each of the base pairs. Quantitative measures of
covariance have been implemented in 𝜒2 statistics and
mutual information. Akmaev et al. [4] also extended these
approaches to explicitly consider sequence phylogeny and
showed positive results. Hybrid approaches, which have
recently emerged, combine the advantages of thermodynamic
and comparative approaches [5]. Hybrid approaches consider
both thermodynamic stability and sequence covariance and
produce positive results on as few as three homologous
sequences. Other methods cannot be classified into any of
these three families. A few of these methods attempt to
simultaneously align and fold homologous sequences [6].
Eddy and Durbin [7] introduced stochastic context-free
grammars to align homologous sequences iteratively and
found a consensus structure for them.

A pseudoknot motif is a prevalent RNA structure. Pseu-
doknots serve various functions in biology [1]. Plausible pseu-
doknotted structures have been proposed and confirmed for
the 3󸀠-end of several plant viral RNAs, where pseudoknots are
apparently used tomimic tRNA structures. Pseudoknots have
been recently confirmed in some RNAs of humans and other
species [6].

Current studies on RNA secondary structure prediction
have not considered pseudoknots. Optimizing secondary
structures, including arbitrary pseudoknots, is NP-hard [8].

Most RNA folding methods that can fold pseudoknots
adopt heuristic search procedures and sacrifice optimal-
ity. Examples of these methods include quasi-Monte Carlo
searches and genetic algorithms. These methods cannot
guarantee the most optimal structure and cannot determine
the accuracy of a given prediction toward optimality [9–13].

A different approach to pseudoknot prediction adopts
dynamic programming to predict the tractable subclass of
pseudoknots based on complex thermodynamic models in
O(𝑛4)–O(𝑛6) time [14–16], making them impractical even for
sequences of a few hundred bases long.

Comparative approaches can also be applied to predict
pseudoknots and are more reliable than thermodynamic
approaches. For example, comparative analysis has revealed
the existence of pseudoknots in several RNAs [17]. However,
comparative analysis has typically been conducted in an ad
hoc manner from an algorithmic point of view.

RNAs fold during transcription from DNA into RNA.
Current RNA structure prediction by calculating the global
optimal structure does not reflect the dynamic folding mech-
anism of RNA [18].

Although DP can accurately predict a minimum energy
structure within a given thermodynamic model, the native
fold is often in a suboptimal energy state that significantly
varies from the predicted one [19]. A case may be made that
the natural folding process of RNA and the simulated folding

of RNA using an evolutionary algorithm, which includes
intermediate folds, have much in common [20, 21].

The current study provides a novel report that RNA
folding accords with the golden mean characteristic based
on the statistical analysis of real RNA secondary structures.
The golden mean is also called the golden section or golden
ratio. Adolf Zeising found the golden ratio expressed in the
arrangement of branches along the stems of plants and of
veins in leaves [22]. He extended his research to the skeletons
of animals and the branches of their veins and nerves,
to the proportions of chemical compounds and geometry
of crystals, and even to the use of proportion in artistic
endeavors. In these phenomena, he found the golden ratio
operating as a universal law. In 2010, the journal Science
reported that the golden ratio is present at the atomic scale
in the magnetic resonance of spins in cobalt niobate crystals
[23]. Several researchers have proposed connections between
the golden ratio and human genome DNA [24, 25].

Applying this characteristic, we design a golden mean
(GM) algorithm by dynamically folding RNA secondary
structures according to the golden section points and
by forming pseudoknots subsequently folded between
nucleotides that did not pair in previous steps.

We implement the method using thermodynamic data
and test the performance on PKNOTS and TT2NE data set.
For PKNOTS data set, the sensitivity and PPV of the Lhw-
Zhu (LZ) and PKNOTS algorithms are increased by 2% to 3%
via the preprocessing of theGMmethod. For TT2NEdata set,
the GM method indicates good performance in predicting
secondary and pseudoknotted structures. The experimental
results reflect the folding rules of RNA from a new angle that
is close to natural folding.

2. Materials and Methods

2.1. Structure Prediction. Let sequence 𝑠 = 𝑠
1
𝑠
2
⋅ ⋅ ⋅ 𝑠
𝑛
be

a single-stranded RNA molecule, where each base is 𝑠
𝑖
∈

{A,U,C,G}, 1 ≤ 𝑖 ≤ 𝑛. The subsequence 𝑠
𝑖,𝑗
= 𝑠
𝑖
𝑠
𝑖
+ 1 ⋅ ⋅ ⋅ 𝑠

𝑗
is

a segment of 𝑠, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.
For first approximation, the secondary structure is mod-

eled as follows. If 𝑠
𝑖
and 𝑠

𝑗
are complementary bases

(A&U,C&G,U&G), then 𝑠
𝑖
and 𝑠
𝑗
may constitute a base pair

(𝑖, 𝑗). Each base can occur in one base pair, or the set of base
pairs can form a matching. The secondary structures are also
noncrossing.

Concretely, a secondary structure 𝑆 on 𝑠 is a set of base
pairs 𝑆 = {(𝑖, 𝑗)}, where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}, that satisfies the
following conditions.

No Sharp Turns. The ends of each pair in 𝑆 are separated by at
least four intervening bases; that is, if (𝑖, 𝑗) ∈ 𝑆, then 𝑖 < 𝑗 − 3.

For any pair (𝑖, 𝑗) in 𝑆, (𝑖, 𝑗) ∈ {(A,U), (C,G), (U,G),
(U,A), (G,C), (G,U)}.
𝑆 is a matching: no base appears in more than one pair.

Noncrossing Condition. If (𝑖, 𝑗) and (𝑘, 𝑙) are two pairs in 𝑆,
then they are compatible; that is, they are juxtaposed (e.g.,
𝑖 < 𝑗 < 𝑘 < 𝑙) or nested (e.g., 𝑖 < 𝑘 < 𝑙 < 𝑗).



BioMed Research International 3

Base pair and internal unpaired bases construct loops. If
(𝑖, 𝑗) and (𝑖 + 1, 𝑗 − 1) ∈ 𝑆, base pairs (𝑖, 𝑗) and (𝑖 + 1, 𝑗 − 1)
constitute stack (𝑖, 𝑖 + 1 : 𝑗 − 1, 𝑗) and 𝑚 (≥ 1) consecutive
stacks form the helix (𝑖, 𝑖 + 𝑚 : 𝑗 − 𝑚, 𝑗) with the length of
𝑚 + 1.

If base pairs (𝑖, 𝑗) and (𝑘, 𝑙) are parallel (𝑖 < 𝑗 < 𝑘 <
𝑙 or 𝑘 < 𝑙 < 𝑖 < 𝑗) or nested (𝑖 < 𝑘 < 𝑙 < 𝑗 or 𝑘 < 𝑖 < 𝑗 < 𝑙),
then base pairs (𝑖, 𝑗) and (𝑘, 𝑙) are compatible; otherwise, they
are incompatible. Such an incompatible structure is knownas
a pseudoknot (e.g., 𝑖 < 𝑘 < 𝑗 < 𝑙). More complex
pseudoknots may occur if three or more base pairs cross each
other.

The concept of the domain was first proposed in 1973
by Wetlaufer after X-ray crystallographic studies on hen
lysozyme [26] and papain [27] and after limited proteolysis
studies on immunoglobulins [28, 29]. Wetlaufer defined
domains as stable units of protein structure that can fold
autonomously. Domains have been previously described as
units of compact structure [30], function and evolution [31],
and folding [32].

Each domain forms a compact 3D structure and is often
independently stable and folded.Most domains have less than
200 residues with an average of approximately 100 residues
[33, 34].

A domain 𝐷(𝑖󸀠, 𝑗󸀠) consists of all (𝑖󸀠, 𝑗󸀠) that satisfy
(𝑖

󸀠
, 𝑗

󸀠
) ∈ 𝐷(𝑖, 𝑗); then 𝑖 < 𝑖󸀠 < 𝑗󸀠 < 𝑗. A base pair can only

occur in one domain.
A domain is closed by a helix or pseudoknot (Figure 3).

A subdomain is an independently stable part of a domain.
If the closed helix or pseudoknot of a domain is deleted, its
subdomain will become a domain.

By convention, single strands of DNA and RNA
sequences are written in 5󸀠-to-3󸀠 direction. RNAs fold
during transcription from DNA into RNA. The subsequence
𝑠
𝑖,𝑗

begins to transcribe from the 5󸀠-end, that is, 𝑠
𝑖
, and

terminates transcription at the 3󸀠-end, that is, 𝑠
𝑗
(Figure 3).

The helix (𝑖, 𝑖 + 𝑚 : 𝑗 − 𝑚, 𝑗) is completely folded after the
transcription of 𝑠

𝑗
. We can determine that the 3󸀠-end of the

helix (𝑖, 𝑖 + 𝑚 : 𝑗 − 𝑚, 𝑗) and the domain 𝐷(𝑖, 𝑗) is the 3󸀠-end
of subsequence 𝑠

𝑖,𝑗
. Let 𝐿 be the sequence length. The length

ratio of the 3󸀠-end of the helix (𝑖, 𝑖 + 𝑚 : 𝑗 − 𝑚, 𝑗) and the
domain 𝐷(𝑖, 𝑗) to the sequence 𝑠

1,𝐿
is the ratio of 𝑗 to 𝐿. This

study determines the characteristic of the 3󸀠-end and the
length of domain in the sequences.

2.2. Characteristic of Golden Section. We compare the struc-
tures of the test set of all 480 sequences (nonfragment and
nonredundant) from RNA STRAND with secondary and
pseudoknotted structures, which are validated by NMR or X-
ray.

The results of statistical analysis on these real secondary
structures are shown in Figures 1 and 2 and Tables 1, 2, 3, and
4. In Tables 1 and 2, Num represents the number of domains,
group is the 3󸀠-end of group, Ratio 1 is the ratio of Group 1
to Group 2, and Ratio 2 is the ratio of Group 2 to Group 3. In
Figures 1 and 2, the𝑥-axis represents the length ratio of the 3󸀠-
end of domain to the sequence, and the 𝑦-axis represents the
number of sequences. The number of complementary bases
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Figure 1: Distribution of domains for sequences with lengths
between 50 and 90. (a) For all NMR- or X-ray-validated data on 55
nonfragment and nonredundant sequences with lengths between 50
and 90 from RNA STRAND, except for synthetic RNA, the length
ratio of the 3󸀠-end of the domains to the sequence is computed and
summarized. If one sequence has only one domain, subdomains are
selected. (b) The 𝑥-axis represents the length ratio of the 3󸀠-end of
the domain to the sequence, and the 𝑦-axis represents the number
of sequences.
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Figure 2: Distribution of domains for tRNA. (a) For all NMR- or X-
ray-validated data on 35 nonfragment and nonredundant sequences
with lengths more than 50 from RNA STRAND, the length ratio
of the 3󸀠-end of the domains to the sequence is computed and
summarized. If one sequence has only one domain, subdomains are
selected. (b) The 𝑥-axis represents the length ratio of the 3󸀠-end of
the domain to the sequence, and the 𝑦-axis represents the number
of sequences.

to form a helix at point 𝑥 in the final structure is insufficient.
Thus, we enlarge point 𝑥 to region 𝑥, and the corresponding
point 𝑦 in the 𝑦-axis with 𝑥 in the 𝑥-axis represents the
number of sequences in the region of [𝑥 − 0.4, 𝑥].

For 16S rRNA, 26 sequences belong to RNA STRAND.
The statistical result is shown in Table 1. The number of
domains varies from 4 to 8. The length ratio of the first
domain to the sequence is shown as Ratio 2. The length ratio
of the first subdomain to the first domain is shown as Ratio 1.
The two ratios are both close to 0.618.

For example, four domains belong to sequence
PDB 00409, namely, D (3, 726), D (731, 1063), D (1084,
1129), and D (1150, 1171). In addition, the subdomains of D
(23, 437) are D (443, 705) and D (1150, 1171). We can divide
the sequence into three groups, namely, 1–442, 1–730, and
731–1174, which represent the length of the entire sequence.
The ratio of Group 1 to Group 2 is 0.61, and the ratio of Group
2 to Group 3 is 0.62 to 0.38.
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Figure 3: Computation of sequence TMVup. (a) Status after the first fold of the GM algorithm. (b) Status after the second fold of the GM
algorithm. (c) Intermediate result of the last step of the GM algorithm. (d) Final fold and predicted structure by GM. (e) Native structure of
TMVup. (f) Final fold and predicted structure by PKNOTS. (g) The top shows the sequence of TMVup.

For long 5S rRNA, 23S rRNA,GI Intron, rRNA, and tRNA
in RNA STRAND, the statistical results are shown in Table 2.
The number of domains varies from 1 to 6. The length ratio
of the first subdomain to the first domain for 5S rRNA is
0.58 and that of GI Intron is close to 0.37. The length ratio
of the second domain to the sequence for tRNA and other
rRNA is close to 0.38. The length ratio of the third domain to
the sequence for tRNA is close to 0.6 and that of the fourth
domain to the sequence for other rRNA is 0.59. For 23S rRNA,
the subdomains areD (16, 2625),D (2630, 2788), andD (2647,
2726).The subdomains ofD (16, 2625) areD (29, 476),D (579,
1261), D (1269, 2011), and D (2023, 2040). D (16, 2625) is a
pseudoknot, Ratio 1 is the ratio of 1261 to 2040, and Ratio 2 is
2040 to the sequence length.

For short RNAs, sequences with lengths less than 50
have generally only one domain and one or two simple
helices. For sequences with lengths between 50 and 90,
except for synthetic RNA, the folding 3󸀠-end of domains
and subdomains is centered on three regions (Figure 1).

The sequences have one to three domains and that with only
one domain has two or three subdomains.The sequences fold
on three regions.The first folds in the region of 0.35L to 0.38L,
the second in the region of 0.6L to 0.618L, and the third in
the region of 0.9L to 1.0L. Among 33 sequences, 25, 28, and
49 have helix 3󸀠-ends located in points 0.382L, 0.618L, and L,
respectively.

For tRNAs with lengths more than 50, the folding 3󸀠-
end of domains and subdomains is centered on four regions
(Figure 2).The sequences have one to three domains and that
with only one domain has two or three subdomains. Among
35 sequences, 15, 14, 14, and 33 have domain or subdomain 3󸀠-
ends located at points 0.382L, 0.5L, 0.618L, and L, respectively.

The data corresponding to Figure 1 are shown in Table 3.
The data corresponding to Figure 2 are shown in Table 4.
The sequences tend to fold twice or thrice. For the

sequences that fold twice, the first folds in the region of 0.5L
and the second in the region of 𝐿. For the sequences that fold
thrice, the first folds in the region of 0.35L to 0.38L, the second
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Table 1: Distribution of domains for 16S rRNA.

Sequence ID Length Num Group 1 Group 2 Group 3 Ratio 1 Ratio 2
PDB 00409 1174 4 442 730 1174 0.61 0.62
PDB 00456 1514 4 548 896 1514 0.61 0.59
PDB 00478 1513 4 545 893 1513 0.61 0.59
PDB 00643 1688 9 559 913 1688 0.61 0.54
PDB 00645 1533 4 559 915 1533 0.61 0.60
PDB 00703 1466 4 520 868 1466 0.60 0.59
PDB 00769 1526 4 559 915 1533 0.61 0.60
PDB 00791 1530 4 562 916 1533 0.61 0.60
PDB 00811 1521 5 545 893 1521 0.61 0.59
PDB 00812 1522 5 545 893 1522 0.61 0.59
PDB 00813 1522 5 545 893 1522 0.61 0.59
PDB 00814 1522 5 545 893 1522 0.61 0.59
PDB 00946 1673 6 545 895 1673 0.61 0.53
PDB 00952 1673 8 545 895 1673 0.61 0.53
PDB 01015 1527 5 546 894 1527 0.61 0.59
PDB 01039 1511 4 545 893 1511 0.61 0.59
PDB 01088 1716 7 532 880 1716 0.60 0.51
PDB 01101 1667 5 545 893 1667 0.61 0.54
PDB 01103 1793 6 545 893 1667 0.61 0.54
PDB 01105 1694 5 545 893 1667 0.61 0.54
PDB 01107 1505 4 545 893 1533 0.61 0.58
PDB 01139 1687 6 545 893 1673 0.61 0.53
PDB 01198 1660 5 545 893 1667 0.61 0.54
PDB 01240 1685 5 545 893 1667 0.61 0.54
PDB 01268 1528 5 545 893 1522 0.61 0.59
PDB 01269 1529 5 545 893 1522 0.61 0.59

Table 2: Distribution of domains for other long RNAs.

Sequence ID Type Length Num Group 1 Group 2 Group 3 Ratio 1 Ratio 2
PDB 00030 5S rRNA 120 1 69 120 0.58
PDB 00082 GI Intron 315 1 116 315 0.37
PDB 00140 GI Intron 314 1 116 316 0.37
PDB 00398 tRNA 380 5 148 228 408 0.38 0.6
PDB 01144 Other rRNA 408 6 151 240 408 0.37 0.59
PDB 00029 23S RRNA 2904 1 1261 2040 2904 0.62 0.70

in the region of 0.6L to 0.618L, and the third in the region of
L.

In mathematics and the arts, two quantities belong to the
golden ratio if their ratio is the same as the ratio of their sum
to their maximum. Expressed algebraically, for quantities 𝑎
and 𝑏 with 𝑎 > 𝑏, 𝑎/𝑏 = (𝑎 + 𝑏)/𝑎 = phi = 1.618, and the
quantities are 0.382 (𝑎 + 𝑏) and 0.618 (𝑎 + 𝑏). These quantities
increase several unique ratios, including 0.618, 0.382, and
1.618, that is, the golden ratio. These ratios exist throughout
nature, from population growth to the physical structure
within the human brain, the DNA helix, many plants, and
even the cosmos itself. The golden ratio is also called the
golden section or golden mean.

The golden mean and the numbers of the Fibonacci
series (0, 1, 1, 2, 3, 5, 8,. . .) have been used with significant

success in analyzing and predicting stock market motion.
Elliott presented wave theory, in which the frequent wave
relationships are golden ratios (19.1%, 23.6%, 38.2%, 50%,
61.8%, and 80.9%). It has a striking similarity to RNA folding.
We can determine that 0.382, 0.5, and 0.618 are the only
important RNA folding points (Tables 1 to 4). The above
results of statistical analysis also confirm this view. Almost
all sequences are folded at L, and approximately half of the
sequences are folded at points 0.382L, 0.5L, and 0.618L. For
long sequences, the other two key fold points 0.236L and
0.809L may be found, which are 0.382L × 0.618 and 0.5L ×
1.618.

Therefore, these points would be closer to natural folding
and obtain higher accuracy than before if RNA is dynamically
folded according to the above golden points.
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Table 3: Distribution of domain and subdomain for sequences with lengths between 50 and 90.

Ratio 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.382 0.40 0.45 0.5 0.55 0.6 0.618 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Number 1 0 0 1 1 1 29 25 4 6 6 4 22 28 11 4 2 1 10 17 8 49

Table 4: Distribution of domains for tRNA.

Ratio 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.382 0.40 0.45 0.5 0.55 0.6 0.618 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Number 1 0 0 3 0 2 14 15 3 2 14 3 10 14 6 5 0 1 6 5 6 33

(1) For (i = startLen, i ≤ sequence length)
(1.1) Run the basic prediction algorithm of secondary structures to produce
matrix Z, and trace back Z to obtain a base pair list L.
(1.2) Identify all helices in L, and combine helices separated by small internal
loops or bulges.
(1.3) Assign a score to each helix by summing up the scores of its constitutive
base pairs or stacks. Select the helix H according to helix length and score,
and merge H into the base pair list S to be reported.
(1.4) Remove positions of H from the initial sequence.
(1.5) Assign next golden point to i.

End for
(2) Compute pseudoknots on the remaining sequences by the crossing of two

subsequences. Trace back to obtain a base pair list K and merge K into S.
(3) Report the base pair list S and terminate.

Algorithm 1

2.3. Dynamic Algorithm. RNAs fold through a hierarchical
pathway, in which the helices and loops are rapidly formed
as secondary structures and the subsequent slow folding of
the 3D tertiary structures would consolidate the secondary
structures [20, 21]. RNAs also fold during transcription from
DNA into RNA. Therefore, we first compute the secondary
structure and then predict pseudoknotted structures. We
fold RNA secondary structures as DNA is transcribed into
RNA. The length of RNA sequences is gradually increased
according to the above golden points, and only reliable helices
are accepted.

For example, we first fold the subsequence 𝑠
1,52

of TMVup
with a length of 52, that is, 0.618L, and form the helix (11,
15: 21, 25) (Figure 3(a)). Then, we fold the subsequence 𝑠

1,84

of TMVup with a length of 84, that is, 0.618L × 1.618 =
L, and form the helix (37, 42: 49, 54) (Figure 3(b)). Finally,
we fold two pseudoknots (Figure 3(d)).Figure 3(c) shows the
intermediate result of the last step, where the helix is formed
(64, 67: 81, 84).

One pseudoknot can consist of one helix and two subse-
quences, and one of the two is included in the helix.Therefore,
we can compute the crossing of two subsequences. Pseudo-
knots consist of one internal and one external subsequence
of helix, and secondary structures consist of two external
subsequences of helices.The residual sequence consists of six
sequences after secondary structure folding (Figure 3(c)).The
subsequences 𝑠

16,20
and 𝑠
26,36

form the helix (17, 20: 29, 32)
(Figure 3(d)), and the subsequences 𝑠

68,80
and 𝑠
55,63

form the

helix (55, 58: 69, 74) (Figure 3(d)). The helices (55, 58: 69, 74)
and (64, 67: 81, 84) form one pseudoknot, and the helices (17,
20: 29, 32) and (11, 15: 21, 25) form another pseudoknot.

The sketch of the GM algorithm is as in Algorithm 1.
The method uses a dynamic programming strategy to

compute the secondary structure values of 𝑍(𝑖, 𝑗) for all 𝑖
and 𝑗 in the start subsequence. The subsequence is then
iteratively lengthened to the next golden point to compute
the secondary structure values of 𝑍(𝑖, 𝑗) for all 𝑖 and 𝑗 in the
new subsequence. Finally, the pseudoknots are computed by
the crossing of two subsequences, and the values of𝑍(𝑖, 𝑗) are
provided for all 𝑖 and 𝑗 in the entire sequence. In this study,
we use our previous LZ algorithm to compute pseudoknotted
structures [16].

For the sequence of TMVup, the startLen is 0.618L, that
is, 52. We fold the subsequence 𝑠

1,52
and select the helix H

(11, 15: 21, 25) with the maximum value; assign 𝑖 as another
golden point 1.618× 52, that is, L, and select the helixH (37, 42:
49, 54).The LZ algorithm computes the residual subsequence
and forms the last structure. The ratio of the latter golden
point to the former one is 1.618, and the length of the start
subsequence should be between 40 and 70.

The time complexity of steps 1.1 to 1.5 is O(𝑛3), and
the number of iterative computations is less than 10 for
sequences with lengths less than 1000. Therefore, the first
step takes O(𝑛3) time. In this study, the time complexity
of step 2 is less than O(𝑛5), which is similar to that of the



BioMed Research International 7

LZ algorithm. Therefore, the time complexity of the GM
algorithm is maintained as O(𝑛5).

3. Results and Discussion

To illustrate the effect of our algorithm, tests are divided
into two parts: one for pseudoknotted sequences and another
for mixed data of pseudoknot-free and pseudoknotted
sequences. We select two data sets. One is TT2NE data set to
test pseudoknotted structures.This data set contains 47 pseu-
doknotted sequences from PseudoBase and PDB. Another
is PKNOTS data set to test secondary and pseudoknotted
structures. This data set includes 116 sequences, including 25
tRNA sequences randomly selected from the Sprinzl tRNA
database,HIV-1-RT-ligandRNApseudoknots, and some viral
RNAs.

The accuracy of an algorithm is measured by both
sensitivity and PPV. Let RP (real pair) be the number of base
pairs in the real RNA structure, TP (true positive) the number
of correctly predicted base pairs, and FP (false positive) the
number of wrongly predicted base pairs. Burset and Guigo
[35] defined SE (sensitivity) as TP/RP and PPV (positive
predictive value) as TP/(TP + FP) in 1996.

3.1. Results of PKONTS Data Set. In this section, we test the
PKNOTS data set, which has become the benchmark dataset
to predict RNA structures and present the prediction results
of our method compared with the PKNOTS algorithm [14]
and our previous LZ algorithm [16].

To explore the effect of the GM method in different
models, we test twomodels and compare the difference before
and after GM processing. First, we run PKONTS and LZ
algorithm on the PKNOTS data set and obtain the output
of the results. We then run the first step of the GM method
to form the frame of secondary structures by dynamically
folding sequences at the golden points and select one stable
helixwith theminimumenergy at each fold. Subsequently, we
obtain the partially folded sequences as the input of PKONTS
and LZ algorithm and run them with the same energy model
and parameters as above. We fold all sequences of the test set
and obtain the results. The test results are shown in Table 5.

For each algorithm, the percentages of sensitivity and
PPV are shown in Table 5. The value is the usual aver-
age of sensitivity and PPV values of all sequences. The
detailed results are displayed as Supplementary data in
Supplementary Material available online at http://dx.doi.org/
10.1155/2014/690340.

The improved PKNOTS algorithm is compared with the
PKNOTS algorithm in both sensitivity and PPV (Table 5).
The improved PKNOTS algorithm increases the sensitivity
from 82.8% to 85.5% and improves the PPV from 78.9% to
80.8%.

The improved LZ algorithm is compared with the
LZ algorithm in both sensitivity and PPV (Table 5). The
improved LZ algorithm increases the sensitivity from 84.8%
to 87.7% and improves the PPV from 80.7% to 82.8%.

The improved LZ and PKNOTS algorithms both have 2%
to 3%higher sensitivity than the LZ andPKNOTS algorithms,

Table 5: Prediction results of improved PKNOTS and LZ algorithm.

RNAs SE PPV
PKNOTS-1.05 82.8 78.9
Improved PKNOTS-1.05 85.5 80.8
LZ 84.8 80.7
Improved LZ 87.7 82.8

respectively. The improved LZ algorithm outperforms the
PKNOTS algorithm by 4.9%.The tests of improved PKNOTS
and improved LZ indicate that the GM method may also be
applied to other algorithms of RNA structure prediction to
improve the prediction sensitivity and reduce the predicted
redundant base pairs.

Both of the improved LZ and PKNOTS algorithms
increase the accuracy of many sequences (e.g., Bioton,
DF0660, DG7740, DI1140, DP1780, DV3200, and DY4840),
from which we can determine the influence of the golden
mean characteristic.

For example, in GM, the first DF0660 sequence is folded
at golden point 0.618L and forms the helix (27, 32: 40, 45),
which exists in real structure except for one base pair (27,
45) (Figure 4(a)). This sequence is then folded at point L and
selects the helix (2, 7: 67, 72), which exists in real structure
(Figure 4(b)). Subsequently, this sequence selects two helices
[(10, 13: 23, 26) and (50, 54: 63, 67)], which exist in real
structure (Figure 4(c)).

However, the PKNOTS algorithm selects two helices [(8,
16: 27, 35) and (38, 40: 47, 49)], which do not exist in real
structure (Figure 4(e)). Only the form of helix (27, 32: 40, 45)
at the first golden point prevents the formation of a large helix
(8, 16: 27, 35) in GM.

For pseudoknotted structure in GM, sequence TMVup is
folded to form two pseudoknots and one helix (37, 42: 49, 54),
which exist in real structure, except for one redundant base
pair (11, 25) (Figure 3(d)).The sequence alsomissed one helix
(34, 36: 43, 45), which is one pseudoknot (Figure 3(d)).

In the PKNOTS algorithm, sequence TMVup is folded to
form four helices, three of which are equal to those in GM,
but one helix (29, 33: 56, 59) is redundant (Figure 3(f)). This
sequence also missed all three pseudoknots. Only the form of
the helix (29, 33: 56, 59) prevents the form of pseudoknots.

Further statistical analysis shows that the selected helices
by the first step of GM basically belong to the real structures
and control the folding pathway. This finding is precisely
ascribed to the GM processing before PKONTS and LZ
improve the accuracy.

3.2. Results of TT2NE Data Set. In this section, we test
the TT2NE data set, which includes 47 sequences from
PseudoBase and PDB, which is also a subset of those used in
the HotKnots.

We present the prediction results of our method com-
pared with those of HotKnots [9], McQfold [10], ProbKnot
[11], TT2NE [13], Mfold [36], and LZ [16]. MFold is restricted
to secondary structures that are free of pseudoknots, whereas
others can result in any topology of pseudoknot.
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Figure 4: Predicted structure of sequence DF0660. (a) Status after the first fold of GM algorithm. (b) Status after the second fold of GM
algorithm. (c) Final fold and predicted structure by GM. (d) Native structure of DF0660. (e) Final fold and predicted structure by PKNOTS.

This set includes most of the sequences where HotKnots
has been tested and shown to perform better than ILM and
PKnots-rg. Thus, we will not compare GM to these latter
algorithms.

The total number of base pairs to be predicted in this
set is 1115. Mfold, HotKnots, McQfold, ProbKnots, TT2NE,
LZ, and GM predicted 618, 671, 740, 669, 870, 785, and 798,
respectively. The total numbers of predicted base pairs are
1024, 1019, 991, 1041, 1146, 1102, and 1112, respectively.

The sensitivity of GM is better than that of the other
algorithms, except for TT2NE, either on the average 1 or on
the average 2 (Table 6). The PPV of GM is better than that of
the other algorithms, except for TT2NE and McQfold, either
on the average 1 or on the average 2.

However, TT2NE has shown the most feasible value after
several times folding with different parameters.Thus, TT2NE
is not the autocomputing value. When given new sequences,
we do not know which result should be selected.

The part of computing pseudoknots in GM is the same
as that in the LZ algorithm, and the difference between them
lies in the preprocessing of secondary structures. The perfor-
mance ofGM is better than that of the LZ algorithm, either on
the average 1 or on the average 2. GM improves the sensitivity

of sequences Bs glmS, EC S15, and HDV antigenomic from
36, 59, and 44 to 51, 100, and 84, respectively. GM also
improves the PPVof these sequences from57, 63, and 34 to 67,
74, and 64, respectively. However, for sequences AMV3 and
BVDV, the performance of GM is only below LZ.

The number of predicted genera by GM is better than
that by other algorithms, except for TT2NE (Table 6). All
Mfolds predictions have genus 0 because Mfold generates
only structures without pseudoknots.

However, TT2NE predicted more redundancy genera
than other algorithms. For example, GLV IRES, R2 retro PK,
and 1y0q sequences have only one native pseudoknot, but
two pseudoknots are predicted by TT2NE. Bs glmS has two
native pseudoknots, but three are predicted by TT2NE.

The percentages of sensitivity and PPV of each algorithm
are shown. The column Gen indicates the predicted number
of genera, and GR is the redundancy number in the predicted
genus, which is more than the number of native genera.
Average 1 is the total number of base pairs that are correctly
predicted in the entire database divided by the corresponding
total number of native base pairs (average sensitivity) and the
total number of predicted base pairs (average PPV). Average
2 is the usual average of sensitivity and PPV values of all
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Table 6: Prediction results of TT2NE data set.

Mfold HotKnots McQfold ProbKnot TT2NE LZ GM
SE PPV SE PPV SE PPV SE PPV SE PPV SE PPV SE PPV

Average 1 55 60 60 67 66 75 60 64 78 76 70 71 72 72
Average 2 50 58 63 67 68 77 54 63 81 80 73 73 75 74
Sum 0 0 18 0 25 0 3 0 47 4 28 0 31 0

Gen GR Gen GR Gen GR Gen GR Gen GR Gen GR Gen GR

sequences. The detailed results are displayed as Supplemen-
tary data.

4. Conclusions

In this study, we provide a novel report that RNA folding
accords with the golden mean characteristic based on the
statistical analysis of real RNA secondary structures.The fold-
ing 3󸀠-end points of the sequence are almost close to 0.382L,
0.5L, 0.618L, and L. These points are the important golden
sections of sequence. Applying this characteristic, we design
a GM algorithm by dynamically folding RNA secondary
structures according to the above golden section points and
by forming pseudoknots with the crossing of subsequences.
We implement the method using thermodynamic data and
test its performance on PKNOTS and TT2NE data sets.

For PKNOTS data set, we preprocess the sequence with
the first step of GM and then obtain the output of the
partially folded sequence as the input of the PKNOTS and
LZ algorithms. Subsequently, the two algorithms improve by
2% to 3%. The reason is that the partial folded sequence
forms its structural frame. In other words, the folding at the
golden points controls the folding pathway and subsequently
prevents the formation of some redundant structures.

Preprocessing of GM may also be applied to other algo-
rithms of RNA structure prediction to improve the prediction
accuracy and to reduce the predicted redundant base pairs.

For TT2NE data set, the sensitivity and number of
predicted pseudoknots of GM are better than those of Mfold,
HotKnots, McQfold, ProbKnot, and LZ. The PPV of GM is
better than that of Mfold, HotKnot, ProbKnot, and LZ.These
findings indicate that the GMmethod has good performance
in predicting secondary and pseudoknotted structures. The
sensitivity and PPV of the GM algorithm surpass those of
most algorithms of RNA structure prediction. The experi-
mental results reflect the folding rules of RNA from a new
angle that is close to natural folding.

The performance of long sequence needs to be further
explored, and parameters for improvement and testing in
large data sets to support web service are topics for future
studies.
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