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Phylogenetic search through partial tree mixing
Kenneth Sundberg1, Mark Clement2*, Quinn Snell2, Dan Ventura2, Michael Whiting2, Keith Crandall3

From The 8th Annual Biotechnology and Bioinformatics Symposium (BIOT-2011)
Houston, TX, USA. 20-21 October 2010

Abstract

Background: Recent advances in sequencing technology have created large data sets upon which phylogenetic
inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search
on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on
tens of thousands of species in a reasonable amount of time through several innovative search techniques.

Results: When compared to popular phylogenetic search algorithms, better trees are found much more quickly for
large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/
psoda

Conclusions: The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly
converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the
overall optimal phylogenetic solution.

Background
Phylogenetic search is an NP-Hard [1] problem. It is
however important to the analysis of biological
sequences and the testing of evolutionary hypothesis [2].
As such it is necessary to employ heuristic methods.
A phylogenetic search begins by using a greedy heuris-

tic to build an initial tree. This initial tree is then
improved by the full search. Unfortunately, the greedy
nature of the starting trees limits the effectiveness of the
full search. For this reason multiple starting trees are
often used, with the hope that at least one will allow the
overall search to find the global minimum.
Partial Tree Mixing (PTM) addresses this issue through

the use of a global representation of partition based tree
space [3]. Using this representation PTM is able to
quickly begin exploring this space with a global search
strategy. PTM uses a strategy focused more on explora-
tion than exploitation. By covering more of the solution
space PTM leads to an increased chance of the overall
search finding a global minimum. Two key features of
PTM allow these goals to be accomplished. First, PTM

divides a problem into smaller, more manageable subpro-
blems, this allows for global search methods such as Tree
Bisection and Reconnection (TBR) to be applied sooner.
Second, PTM uses a global representation of all possible
solutions, this allows for coordination between the sub-
problem search efforts.

Related work
The most common heuristic method for phylogenetic
search is a form of hill climbing. A given possible solu-
tion is permuted into several new solutions. The best of
these solutions is in turn permuted until no better solu-
tions are found.
The most common permutation operation is Tree

Bisection and Reconnection (TBR) [4]. Common meth-
ods in current use for building an initial tree include
distance based methods such as UPGMA (Unweighted
Pair Group Method with Arithmetic Mean) [5] and
neighbor joining [6] , as well as stepwise maximum par-
simony. Both distance methods and stepwise maximum
parsimony are O(n2) algorithms (where n is the number
of taxa).
Distance methods
Distance methods begin by computing an all-to-all dis-
tance matrix between the taxa. This is typically the
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hamming distance between the DNA character
sequences for each taxa though some other metrics have
been used [7]. The nearest taxa are joined into a clade.
Then the distance from this clade to all other taxa is
computed. The method of calculating this distance var-
ies between different distance methods. This clustering
of taxa into clades continues until a complete tree has
been built.
Stepwise maximum parsimony
Stepwise maximum parsimony begins by shuffling the
taxa into a random order. The first three taxa are joined
together into the only possible three taxon tree. In turn
each taxon is inserted along every branch in the current
tree. It is left in the most parsimonious position. This
process continues until all the taxa have been added,
resulting in a complete tree.
Tree bisection and reconnection
Tree Bisection and Reconnection (TBR) is a common
means of generating new solutions during a phyloge-
netic search. Each iteration of TBR is an O(n3) algo-
rithm and produces O(n3) trees to be examined. The
first step is to select a branch in the tree and remove it,
producing two subtrees. A branch is then selected in
each of the two subtrees. A new tree is produced by
reconnecting the two subtrees at the selected branches.
An iteration of TBR ends when the original tree has
been split along every branch and each of those splits
has been rejoined in all possible ways. If one of the new
trees is better, then the search continues by performing
a TBR iteration on the improved tree. If no better tree
is found the search ends.

Partition based tree space
Trees can be considered as collections of bipartitions of
taxa. Every branch in a tree divides the taxa into two
sets. Some of these bipartitions, those arising from
branches connected to the leaves, are common to all
trees. These trivial bipartitions are ignored. All other
possible partitions are assigned a dimension in tree
space. The position of a tree is a vector whose compo-
nents all have the value 1 or 0. These values respectively
represent the presence or absence of the associated
bipartition.
In this space there is a close relationship between the

Euclidean distance between two trees and the Robinson-
Foulds (RF) [8] distance between those same trees.
Namely the Euclidean distance is the square root of the
RF distance.
The hypersphere of trees
It is well known [9] that all fully resolved trees of n taxa
have 2n – 3 branches. n of these branches are trivial,
and are therefore ignored. The position of any resolved
tree will therefore have exactly n – 3 elements with the
value of 1, all others will have the value of 0. It is easy

to see that the distance from this point, the position of
an arbitrary fully resolved tree, and the origin is

n  3 . As all such points are equidistant from the ori-
gin, it is the case that every fully resolved tree lies on
the surface of a hypersphere. Unresolved trees are trees
which have fewer than n – 3 non-trivial branches. Con-
sider a tree lacking m branches, by the same argument
as used for resolved trees, the distance between this tree
and the origin must be n m  3 , and all such trees
lie on the surface of a smaller concentric hypersphere of
radius n m  3 .
The set of all trees, both resolved and unresolved lie

upon the surfaces of a set of n – 3 concentric hyper-
spheres. At the origin lies the fully unresolved tree,
which possesses no branches. The next sphere out, with
a radius of 1, contains all trees with 1 branch. Each suc-
ceeding sphere contains trees with one more branch in
them than the last sphere, until the final sphere of
radius n – 3 is reached.
Cartographic projections
The dimensionality of tree space is O(n!!) [10], with
respect to the number of taxa. Directly representing
trees in this space quickly becomes prohibitive. One
method of mitigating this explosive dimensionality is
through cartographic projections [3]. A small number of
reference vectors are chosen in tree space, these vectors
need not correspond to valid trees. The coordinates of a
tree are then defined as the inner products of the vector
representing the tree and these reference vectors. Due
to the very sparse nature of a vector which represents a
tree, these inner products can be computed with a sin-
gle pass over the tree in O(n) time. The method used to
store the reference vectors is a hash table, and this has
been shown [11] to preserve the relationship between
Euclidean and RF distance.

Results and discussion
In this section two types of results are considered. First,
the work examines the effects of the parameters avail-
able to the user on the time taken and on the quality of
the trees found. Second, using default settings for these
parameters the method is compared with other phyloge-
netic search programs. PTM followed by a standard
TBR search is shown to find better trees than competing
methods.

The effects of partial tree size
The PTM algorithm allows the user to set two para-
meters which affect the size of the partial trees during
the search. The first is a maximum partial tree size.
Two partial trees will not join together if the result
would be a tree larger than the maximum size. The sec-
ond is a minimum partial tree size. This is a soft limit,
it does not prevent partial trees smaller than this limit.
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Rather, a tree which is at or below this minimum limit
will not subdivide further.
Figures 1 and 2 show the effects of partial tree size on

time and on the score found. A PTM search was made
on the Zilla data set (500 taxa) [12], setting the mini-
mum and maximum size of the partial trees between 10
and 200 taxa. The time taken by the PTM search and
the final score found were recorded. This time and
score do not reflect the final tree found by the search,
only the initial tree found with the PTM algorithm.
The time taken by the PTM algorithm increases as the

size of the partial trees increases. Figure 1 shows this
relationship. This is not unexpected as Partial Tree Mix-
ing uses a divide and conquer strategy. There is a visible
boundary between two regions of the parameter space.
In one region both the minimum and maximum sizes
are large and the time taken is longer. In the other
region at least one of the two sizes is small.
The speed in this second region is a result of smaller

tree sizes, which can be quickly optimized. As the maxi-
mum size is a hard limit it is clear how a smaller maxi-
mum size leads to smaller partial trees. It is not as
obvious how a smaller minimum size leads to smaller
trees. Consider a partial tree containing a small set of
taxa unlike the other taxa in this partial tree. After opti-
mization these taxa will tend to group together at the
end of a long branch. This long branch will be selected as
the division point when forming new partial trees. The
result is a tree close to the maximum size, and a small
tree. The larger tree, being close to the maximum size is
less likely to join with another tree in the following itera-
tion. Small trees do not subdivide if they are below the
minimum size. If the minimum size is close to the maxi-
mum size, many of these small trees will join together to
form a tree within the prescribed limit. This tends to
increase the average size of the partial trees. However, a

small minimum size allows these smaller partial trees to
form a mix without requiring that they first join together
to make large trees. This in turn tends to decrease the
average size of the partial trees. The reduction in average
size leads to a decrease in the time spent in the PTM
algorithm.
There is little variation in the score found by PTM

with respect to the size of the partial trees especially
after TBR refinement. However, as shown in Figure 2,
larger partial trees tend to yield slightly more parsimo-
nious trees after PTM only. As discussed in section 5.2
larger partial trees are more accurate representations of
the trees in their images. Allowing some larger trees can
therefore help the quality of the final tree produced.
Smaller partial trees are important for exploration of the
possible space. Perhaps the best solution in terms of
final tree quality is to have a large to moderate maxi-
mum tree size and a small minimum tree size. This
allows a variety of both larger trees for exploitation and
smaller trees for exploration.
Larger partial trees lead to better scores, but longer

search times. Thus, there is a tradeoff in this parameter
space between the amount of time spent by PTM and
the quality of the tree found. A small or moderate mini-
mum size is desirable for both speed and accuracy. A
large maximum size increases quality while decreasing
speed. The best overall results occur where the maxi-
mum size is large enough to give good results, and the
minimum is small enough to compensate for this maxi-
mum size in terms of execution time. The optimal para-
meters likely vary by data set. This implementation uses
the conservative default values of 40 and 60, respectively
for the minimum and maximum sizes. While these
values are likely not near the optimal for most data sets,
they seem unlikely to give poor performance on any.

Figure 1 The effects of partial tree size on time. A graph of the
time taken by the PTM algorithm as the size of the partial trees is
varied. Two partial trees will not join if doing so would create a
partial tree larger than the maximum size. A partial tree below the
minimum size will not divide further. In general the PTM algorithm
takes less time with smaller minimum and maximum sizes.

Figure 2 The effects of partial tree size on score. A graph of the
maximum parsimony score of the tree found by the PTM algorithm
as the size of the partial trees is varied. Two partial trees will not
join if doing so would create a partial tree larger than the
maximum size. Using larger partial trees tends to yield slightly
better parsimony scores after PTM only, but near optimal scores are
found by all searches after TBR refinement.
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Comparison with existing phylogenetic search programs
PAUP* [13] is perhaps the most widely used program
for phylogenetic inference using parsimony. For this rea-
son, the performace of PTM was compared to PAUP*
using stepwise addition and TBR. TNT [14] and DCM
[15] are newer programs which implement a wide vari-
ety of heuristic methods [15,16]. Partial Tree Mixing
was implemented in the open source phylogenetics pro-
gram PSODA [17]. These methods were tested on data-
sets ranging from 218 to 8780 taxa. PTM was compared
against stepwise maximum parsimony where both were
followed by a TBR based search until a minima was
found. As the step which combines the two final partial
trees is equivalent to a standard TBR search, the PTM
algorithm was further refined using the Parsimony
Ratchet [12] and a sectorial search [16].
The results are summarized in Table 1 and 2. Table 1

compares the results of PTM to stepwise maximum par-
simony. PTM takes significantly more time than step-
wise maximum parsimony. However, PTM also yields
higher quality trees. Table 2 considers the effect of these
higher quality trees on the overall search. This table
compares the total time taken, both in PTM or stepwise
maximum parsimony and in TBR. Here the value of the
PTM search is made clear. The final results from PTM
for all of the data sets are superior to the final results
found using a stepwise tree. Furthermore, with the
exception of the smallest data set, these superior trees
are found in less time.
A trace of a typical result is shown in Figure 3, the figure

shows a search through a set of 6722 taxa. This trace only
shows the TBR search after stepwise to the point in time
when PTM returned an initial tree. The scores for the
PTM search do not include any TBR refinement. For

much of the search time the current tree score of PTM is
poor. However, while PTM is exploring low scoring trees
it is sampling from a broad area of tree space. It does this
so that later phases of the search will not be caught in
local minima. The value of this exploration is seen in how
quickly the score improves, attaining a far superior answer
in less time than traditional methods. The solution from
PTM, before any TBR refinement, implies 900 fewer
mutation events then the solution found by PAUP*. The
solution found was then passed on to a TBR search where
further improvements were made, though this is not
shown in the figure.

Table 1 PTM vs stepwise maximum parsimony

Dataset RDPII ZILLA U ARB

Taxa 218 500 6722 8780

PTM

Score 33534 16234 92195 162440

Time 00:00:52 00:01:23 09:30:48 21:35:32

PAUP*

Score 33934 16414 95217 165289

Difference +400 +180 +3022 +2849

Time <00:00:01 <00:00:0l 00:01:21 00:03:36

PAUP* (multiple trees)

Score 33855 16386 94922 165149

Difference +321 +152 +2727 +2709

Time 00:00:58 00:01:40 06:30:44 12:18:10

A comparison of search results between PTM and stepwise maximum
parsimony on several datasets. Note that in every case PTM found more
parsimonious trees, but in much more time. When stepwise maximum
parsimony was used to find multiple starting trees (300), PTM still found more
parsimonious trees.

Table 2 PTM vs PAUP*

Dataset RDPII ZILLA U ARB PROTO

Taxa 218 500 6722 8780 25057

PTM

Score 33515 16218 92195 162438 810231

Time 1:18:29 2:32:03 10:39:56 24:47:00 23:49:40

PAUP*

Score 33565 16221 93106 162906

Difference +50 +3 +911 +468

Time 0:01:28 15:42:19 20:10:42 29:13:33

TNT

Score 42166 16219 201259 170356

Difference +8651 +1 +109064 +7918

Time 0:00:48 0:00:07 1:31:54 1:47:45

A comparison of search results between PTM and PAUP*, TNT, and DCM on
several datasets. Note that in every case PTM followed by PSSS found a more
parsimonious tree than PAUP* using stepwise maximum parsimony followed
by TBR. In all but the smallest case, where the overhead of PTM is more
difficult to overcome, this tree was found in less time. TNT finishes much
faster than PTM, but finds less parsimonious trees. DCM experienced errors in
processing many of the data sets and reported no score in these cases.
However, the result from the successful run was inferior. Only the PTM
method was able to process the largest data set of protobacteria, containing
more that 25 thousand taxa.

Figure 3 Scores found over time for PTM and PAUP*. A
comparison of scores found over time between Partial Tree Mixing
(PTM) and PAUP* [13] (Stepwise Maximum Parsimony followed by
TBR). Although PAUP* achieves better scores during the early
phases of the search, PTM achieves significantly better results after
30000 seconds.
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Conclusions
Partial Tree Mixing is a method for producing an initial
phylogenetic tree for use in common hill climbing
methods. Current methods produce a tree built using
only local information such as pairwise distances or
stepwise parsimony. As the trees produced by these
greedy methods can limit the final score after a TBR
search it is common practice to start many searches
from different starting trees. A TBR search is much
more expensive than any of the current starting meth-
ods and this duplication of effort outweighs the benefits
of a quickly produced starting tree.
PTM produces a tree based on a global search of tree

space guided by a partitioned based representation of all
possible solutions. Although much more time is
expended in producing this tree, results show that the
tree produced is of better quality than a tree found using
stepwise maximum parsimony followed by an equal
amount of time spent in a TBR search. The exploratory
nature of the PTM search greatly reduces the need for
multiple searches, as PTM produces excellent starting
trees. This in turn reduces the overall search time, as
duplicate searches are not needed. Overall, a search
started with a PTM produced tree finds better solutions
in less time.

Methods
Partial Tree Mixing (PTM) is intended to initialize a
search through a data set with a large number of taxa. A
concern with current methods is that they take O(n2)
steps before any searching can occur. When n is small
this is not problematic, especially as no prior methods
have proposed any other solutions to initializing a TBR-
based search. While PTM takes more than O(n2) steps
before handing over an initial tree to a TBR-based search,
it is able to begin global searching after only O(n log n)
steps.

Overview of partial tree mixing
Partial Tree Mixing is a divide and conquer strategy for
building an initial search tree. A primary goal of PTM is
to use partial trees (see Definition 6.2), containing only
a subset of the taxa to search tree space. By keeping the
number of taxa small, PTM is able to search faster than
traditional methods.
Unlike previous methods, PTM is not a greedy heuris-

tic. Although it employes heuristic techniques, PTM
uses a representation of the global search space to
insure that a large portion of the space is explored. This
global representation is based on considering trees as
collections of bipartitions [3]. Each bipartition is asso-
ciated with a dimension. The location of a tree in this
tree space is determined by which bipartitions are in the

tree. As a result topologically similar trees are close
together. A thorough exploration of this space therefore
leads to a thorough examination of possible topologies.
This reduces the necessity of finding multiple starting
trees to avoid local minima.
The PTM method is based on the idea that an unre-

solved tree is an approximation of all the resolutions (see
Definition 6.3) of that tree. This is a reasonable assump-
tion as the unresolved tree contains the information
which is common to all of its resolutions. The quality of
the approximation depends on the degree of resolution
of the unresolved tree. The fully unresolved tree contains
no information about any of its resolutions, while the
fully resolved tree contains perfect information about its
resolution. However, while the quality of the approxima-
tion increases as the degree of resolution increases the
number trees which are represented by the approxima-
tion decreases. PTM leaves the size of partial trees, and
therefore the degree of resolution, to the user. Section
2.1 discusses the effects of varying this parameter. The
region of the global tree space which contains all of these
resolutions is the image (see Definition 6.6) of the unre-
solved tree.
During tree mixing, unresolved trees are chosen which

have images covering new portions of tree space. As the
partial trees are kept small, many of these exploratory
searches can be accomplished in a small amount of time.
Although this exploratory effort is important to the suc-
cess of PTM, the partial trees are constrained to only
consider improvements throughout the process.
Figure 4 shows a graphical overview of the PTM pro-

cess. First the taxa are divided into disjoint sets and the
initial partial trees are built (Section 5.1). Then the par-
tial trees mix together, exploring the global tree space
(Section 5.2). Finally the partial trees are joined to build
a fully resolved tree (Section 5.3), which can then be
passed on to the usual TBR-based search.

Algorithm
The PTM algorithm consists of three phases described
in detail below. First, a set of initial partial trees is built.
Next, these trees are mixed to improve their quality.
Then a final complete tree is built using these partial
trees. Once this tree is built it can be further refined
using traditional methods.

Initial partial trees
To begin the PTM algorithm the taxa are first divided
into small disjoint subsets. An effort is made to place
similar taxa into the same subset. This is done by com-
puting a pairwise distance between an arbitrary taxon
and all others. As taxa are usually given as DNA charac-
ter sequences this distance is an edit distance between
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Figure 4 A brief overview of the PTM algorithm. A brief overview of the PTM algorithm. In the first phase the taxa are sorted and grouped
into small disjoint sets. A stepwise maximum parsimony tree is built from each of these sets. In the second phase these trees are repeatedly
joined, refined, and divided. The division of trees is identical to the tree bisection portion of the TBR algorithm. Likewise, the joining of these
trees is identical to the tree reconnection portion of TBR. For this joining to work, it is essential that no taxa is represented twice. To insure this,
during a PTM search all leaves on all partial trees are uniquely labeled. In the final phase no division occurs. Thus, the trees continue to grow in
size until a tree containing all of the taxa is produced.

Sundberg et al. BMC Bioinformatics 2012, 13(Suppl 13):S8
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the two sequences. The taxa are then placed into a
priority queue using this distance. Next the taxa are
drawn off this queue in nearly even groups of 50-100
taxa. This O(n log n) method avoids the high costs of
other distance methods. Then the initial partial trees are
formed using stepwise maximum parsimony on these
much smaller data sets. These initial trees are finally
refined using TBR. As these partial trees have fewer
than 100 taxa a local minima can usually be found in a
few seconds. Thus the first searching of tree space
occurs after O(n log n) steps, much sooner than under
traditional methods which are O(n2).

Algorithm 1 Initial partial Trees                                                                                                     

  taxon, taxon taxa

 Part

Require :

Ensure :

 
iialTrees

taxa.sort()

 ! taxa.empty() 

PartialTrees.

 0

while do

ppush(new PartialTree(taxa.getTaxaSet())

         end while                                                                                                                          

Tree mixing
Once PTM has a set of disjoint locally optimal partial
trees, the search progresses via tree mixing. In this pro-
cess two partial trees are joined to form a new partial
tree. This tree is refined with TBR to find a local
minima. The optimized partial tree is then divided again
into two new partial trees. These trees in turn join with
others. This both keeps the size of each tree small, so
that TBR is effective, and allows information to spread
through the system.
Partial trees never join with their siblings from the

previous division as this results in no progress. Beyond
this constraint, they are free to join with any other par-
tial tree. Partial trees remember where the tree they
split from was located, and seek partners to join with
that will place the new combined tree as far from the
old combined tree as possible. The purpose of this pre-
ference is as a heuristic method to cover as much of the
hypersphere of trees as possible with the images of the
larger partial trees.
The image of a joined partial tree encompasses the

intersection of the images of its member trees. Figure 5
shows this relationship graphically. The larger partial
tree has a smaller image than the partial trees of which
it is composed. Though smaller, this image is a more
accurate representation of the quality of trees in that
region of tree space. It is therefore important to cover
as much of tree space as possible with these higher
quality images. This is accomplished by building new
partial trees as far away as possible from previous partial
trees. This distance helps to encourage the exploration
of tree space.

It is not necessary to remember the location of old
partial trees from iterations other than the immediately
proceeding iteration. While the image of a partial tree
contains all resolutions of that tree, it is not the case
that no other trees lie within this region of tree space.
It is unlikely that a partial tree whose image has a large
overlap with the image of a previously considered par-
tial tree contains no new trees. Additionally, as the
search progresses the overall quality of the partial trees
being used improves. It may be helpful to reexamine an
area covered by an old image in light of this new
information.
Figure 6 shows a comparison of the number of itera-

tions used and the score found by PTM. The spike in
this graph around 5 iterations occurs as PTM finds a
large local minima which TBR has a difficult time escap-
ing. With fewer iterations this minima is not found, and
with more iterations it is escaped. The optimal number
of iterations is data set dependent. In this work we used
three iterations which worked well across the data sets
tested. This small number of iterations greatly reduces
any concern of duplicating effort from prior iterations.
Partial trees are divided on their longest branch. If

parsimony is the optimality criterion, this is the branch
which requires the greatest number of mutation events.
If likelihood is used then branch length has the usual
meaning. This tends to keep taxa together during mix-
ing that are together in an optimal tree. It also allows
those taxa which are most different from others in a

Figure 5 The effects of partial tree joining. A depiction of the
effects of partial tree joining on the images of the partial trees
involved. Partial trees A and B are combined to form partial tree C.
A and B have fewer branches than C, therefore they can be
resolved into more trees and each has a larger image than C. The
image of C is contained in the intersection of the image of A and B,
as any resolution of C is also a resolution of A and a resolution of B.
Although the image of C is smaller it is more detailed, as C is more
resolved.
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partial tree to migrate to a different partial tree where
they can be placed more appropriately.

Building the tree
After a prescribed number of tree mixing iterations, PTM
begins to build a fully resolved tree. Partial trees continue
to seek partners for joining as before. However no partial
tree division occurs. Thus the partial trees become larger
and larger until a fully resolved tree is built. During this
phase PTM does progressively less exploration and pro-
gressively more exploitation. This tree is then passed on
to a TBR based search or some other method as would
be done with a stepwise maximum parsimony tree.

Algorithm 2 Tree Mixing                                                                                                     

 PartialTrees

 PartialTrees

 

Require :

Ensure :

for




0

0

i  


0 MaxIterations 

 PartialTree1 PartialTrees 

cl

do

for all do

oosestDistance MaxDistance

 PartialTree2 PartialTree


for all ss 

 PartialTree1 PartialTree2 

 PartialTree1.dist

do

if then

if


aance(PartialTree2) closestDistance) 

closestDistance P




then

aartialTree1.distance(PartialTree2)

PartialTree1.closestTreee PartialTree2

 

 

 

PartialTree1.join(Partia


end if

end if

end for

llTree1.closestTree)

 

  PartialTree PartialTree

end for

for all  ss 

PartialTree.TBR()

 

  PartialTree PartialTr

do

end for

for all  eees 

PartialTrees.add(PartialTree.divide())

 

   

do

end for

end                                                       for                                                                          

Proofs and definitions
This section contains formal definitions of terms used in
this work.

Definition 6.1. Tree: A tree is a connected acylclic
graph with no vertices of degree two. A tree is resolved
if its vertices are only of degree one or three, otherwise
it is unresolved. The edges of this graph are also called
branches. The vertices of degree one are called leaves.
The leaves of a tree are labeled with taxa.
Definition 6.2. Partial Tree: A partial tree is a

resolved tree whose leaves are labeled with a subset of
the taxa.
Definition 6.3. Resolution of unresolved trees: A

resolved tree(R) is a resolution of an unresolved tree (U)
if the resolved tree can be iteratively constructed from
the unresolved tree using the following operation. Select
vertex v of at least degree four. Call the set of vertices
directly connected to v, G. Remove v and all edges
between v and any member of G from the graph. Add
two new vertices v1and v2 and the edge (v1, v2) to the
graph. Finally for each element g of G add either (v1, g)
or (v2, g) such that v1 and v2 are at least degree 3.
Definition 6.4. Resolution of partial trees: A resolved

tree is a resolution of a partial tree (T) if it is the resolu-
tion of an unresolved tree (U) that can be constructed
in the following manner: Let V be the set of vertices in
T that are not leaves. For every taxa not in the partial
tree add a vertex t labeled with the taxa and an edge (t,
v) where v Î V. Figure 7 shows this process.

Images under cartographic projections
Cartographic projections are used to build a representa-
tion of the global tree space. This section covers the
properties of images of various tree constructs under
this projection.
Definition 6.5. Properties of the Cartographic

Projections:
• The projection maps branches to vectors in ℝn

• The components of these vectors are uniformly dis-
tributed from [–1,1]
• Resolved trees are projected to the sum of the pro-

jections of their component branches, a point in ℝn

• All trees lie in ℝn, also referred to as global tree
space
See [3] for details.
Definition 6.6. Image of an unresolved or partial tree:

The image of an unresolved or partial tree is defined as
a volume which contains the image of all resolutions of
this tree.
Theorem 6.7. The image of an unresolved tree is a

hypersphere.
Proof. Consider an unresolved tree of n taxa which has

n – m – 3 branches. The location of the image of any
resolution of this tree contains two components. The
first is the sum of the images of the n – m – 3 branches
from the unresolved tree. This will be the same for all

Figure 6 PTM score vs PTM iterations. A comparison of the score
of a PTM tree against the number of PTM iterations used in the
search.
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resolutions, and lies at the center of the hypersphere.
The second is the sum of the images of the m branches
constructed during resolution. The magnitude of the
components of these vectors is at most 1. If the projec-
tion is into d dimensions then the maximal magnitude
of such a vector is d . With m such vectors, the mag-
nitude of their sum can not exceed m d . This is the
radius of the hypersphere. The image of any resolution
is the sum of the center of the hypersphere and some
vector with magnitude less than or equal to the radius
of the sphere. Clearly all such images are contained by
this sphere.
Theorem 6.8. If two unresolved trees can he constructed

from the same partial tree then the centers of their images
are not separated by more than 2 3( )n m d  .
Proof Consider a partial tree with n – m taxa. This tree

has n – m – 3 branches. The branches added when resol-
ving a partial tree to an unresolved tree are identical. Thus,
two such resolutions can at most differ by n – m – 3
branches. If two such resolutions differed by every branch
possible, and the vectors associated with the differences
were all of the maximal magnitude and in opposite direc-
tions, the centers of the two images could not be separated
by more than 2 3( )n m d  .
Theorem 6.9. The image of a partial tree is bounded

by a hypersphere.
Proof. Consider a partial tree with n – m taxa. Unre-

solved trees which are resolutions of this tree will have
n – m – 3 branches. The hyperspheres which contain
the images of these unresolved trees will all be of radius
m d , where d is the dimensionality of the image space.
By Theorem 6.8 the most distant unresolved trees are
not separated by more than 2 3( )n m d  . Thus it is
clear that all trees in the image of any of the

hypersphere images of the unresolved trees can be cir-
cumscribed by a single larger hypersphere of at most
radius ( )n d 3 .
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