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Abstract: Characterization of microbial communities via next-generation sequencing (NGS) 

requires an extraction of microbial DNA. Methodological differences in DNA extraction protocols 

may bias results and complicate inter-study comparisons. Here we compare the effect of two 

commonly used commercial kits (Norgen and Qiagen) for the extraction of total DNA on estimating 

nasopharyngeal microbiome diversity. The nasopharynx is a reservoir for pathogens associated with 

respiratory illnesses and a key player in understanding airway microbial dynamics. 

Total DNA from nasal washes corresponding to 30 asthmatic children was extracted using the 

Qiagen QIAamp DNA and Norgen RNA/DNA Purification kits and analyzed via Illumina MiSeq 

16S rRNA V4 amplicon sequencing. The Norgen samples included more sequence reads and OTUs 

per sample than the Qiagen samples, but OTU counts per sample varied proportionally between 

groups (r = 0.732). Microbial profiles varied slightly between sample pairs, but alpha- and beta-

diversity indices (PCoA and clustering) showed high similarity between Norgen and Qiagen 

microbiomes. Moreover, no significant differences in community structure (PERMANOVA and 

adonis tests) and taxa proportions (Kruskal-Wallis test) were observed between kits. Finally, a 

Procrustes analysis also showed low dissimilarity (M
2
 = 0.173; P < 0.001) between the PCoAs of the 

two DNA extraction kits. 

Contrary to what has been observed in previous studies comparing DNA extraction methods, 

our 16S NGS analysis of nasopharyngeal washes did not reveal significant differences in community 

composition or structure between kits. Our findings suggest congruence between column-based 
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chromatography kits and support the comparison of microbiome profiles across nasopharyngeal 

metataxonomic studies. 

Keywords: 16S rRNA; asthma; DNA extraction; metataxonomics; microbiome; nasopharynx 

 

1. Introduction 

The advent of next-generation sequencing (NGS) technology has significantly facilitated 

characterization of microbial communities (microbiomes) residing in the human body [1–4]. 

Numerous metagenomic (shotgun sequencing) and metataxonomic (amplicon sequencing; e.g., 16S 

rRNA) approaches [see 5 for distinction] have been developed and widely applied to describe and 

compare human microbiomes during health and disease [2,6–9]. Given the plethora of available 

methods, initial choices in upstream analysis may cause biases in the subsequent estimation of 

microbial (taxa or OTUs) profiles (downstream analysis), hindering interpretation and comparison of 

studies and threatening their veracity [10,11]. NGS metagenomic and metataxonomic projects 

usually start with a microbiome DNA extraction, which also requires choosing a specific protocol. 

Multiple systematic comparisons of available commercial kits for DNA extraction have shown that 

variation in their design and components (e.g., reagents, disruption procedure, filtering column) can 

lead to technical biases (non-biological differences) in microbial composition and structure [12–14]. 

Most of these studies, however, have been focused on gut, skin, and oral microbiotas [15], and less 

frequently have included other organs of interest, such as the respiratory tract. One exception is the 

study by Willner et al. [15], which compared five DNA extraction methods for microbial community 

profiling of bronchoalveolar lavage samples. In this study the authors revealed that differences 

between extraction methods were significantly greater than differences between technical replicates, 

emphasizing the importance of standardizing methodologies for airway microbiome research and the 

need for further testing. Here we use nasopharyngeal washes to perform a new comparative study of 

two additional DNA extraction protocols not included in Willner’s study for characterizing airway 

microbiotas. 

The nasopharynx is considered an anatomical reservoir from which pathogenic microbes can 

spread to the lower and upper respiratory airways and cause respiratory infections, or invade the 

bloodstream to cause sepsis and meningitis [16–19]. Consequently, given its importance, the 

nasopharynx has been the focus of intense microbiome research over the last few years. Numerous 

metagenomic and metataxonomic studies have identified commensal and pathogenic members of the 

nares and investigated how nasal microbiotas change during health and disease [18–30]. Several of 

these studies used Qiagen and Norgen commercial kits to extract microbial DNA; however, no 

technical comparative study so far has assessed the effect that these, or any other commercial kits, 

have on nasopharyngeal profiling. Consequently, how upstream methodological choices bias 

estimation of nasopharyngeal microbial diversity and structure is unknown. In this study we used 

high-throughput 16S amplicon data to evaluate the effect that two commercial kits (Qiagen and 

Norgen) commonly used for the extraction of DNA have on microbial profiling of nasopharyngeal 

washes from asthmatic children. 



110 

AIMS Microbiology  Volume 2, Issue 2, 108-119. 

2. Materials and Methods 

2.1. Ethics approval and consent to participate 

All participants in this study were part of the AsthMaP2 (Asthma Severity Modifying 

Polymorphisms) Study. AsthMaP2 is an ongoing study of urban children and adolescents designed to 

find associations among airway microbes, environmental exposures, allergic sensitivities, genetics, 

and asthma [31]. AsthMaP2 and the study presented here were approved by the Children's National 

Medical Center Institutional Review Board (Children's National IRB), which requires that consent is 

obtained and documented prior to conducting study procedures and collection of samples for 

research. Written consent was obtained from all independent participants or their legal guardians 

using the Children's National IRB approved informed consent documents. 

2.2. Nasopharyngeal samples and molecular analyses 

A total of 30 children and adolescents (ages 6 to 18 years) were recruited from the metropolitan 

Washington, DC, area. All had been physician-diagnosed with asthma for at least one year prior to 

recruitment. Individuals who reported a medical history of chronic or complex cardiorespiratory 

disease were ineligible. Their nasopharynges were sampled by instilling 5 ml of isotonic sterile 

saline buffer into each nare, holding it for 10 seconds, and then blowing into a specimen collection 

container. Nasal washes were then split in half and extracted using the Qiagen QIAamp DNA Kit 

(Catalog # 51304) and the Norgen RNA/DNA Purification Kit (Product # 48600, 48700). These two 

kits are simple and commonly used in the study of airway microbiomes, but never have been 

compared before. In both kits, DNA purification is based on heating, and chemical and enzymatic 

reactions followed by spin column chromatography. These processes involve a pre-incubation in  

100 μL of lysozyme-TE buffer pH = 8.0 for 15 minutes at 37 °C, followed by a lysing step via lysis 

solution and proteinase K. The DNA in the lysate is then captured and purified on a DNA 

purification column. Potential differences between kits involve the composition of the lysis, washing 

and elution solutions, proteinase K, and the silica gel membrane inside the spin columns. No specific 

information for any of these components is provided by the kit manufacturers. All extractions 

yielded >50 ng of total DNA (as indicated by NanoDrop 2000 UV-Vis Spectrophotometer 

measuring). No significant differences (paired t-test) in DNA concentration and quality (ratios of 

absorbance at 260 and 280 nm) were detected between extraction kits. DNA extractions were 

prepared for sequencing using the Schloss’ MiSeq_WetLab_SOP protocol (09.2015) in  

Kozich et al. [32]. Each DNA sample was amplified for the V4 region (~250 bp) of the 16S rRNA 

gene and libraries were sequenced using the Illumina MiSeq sequencing platform at University of 

Michigan Medical School. 

2.3. Sequence analyses 

Raw FASTQ files were processed in mothur v1.35.1 [33]. Default settings were used to 

minimize sequencing errors as described in Schloss et al. [34]. Clean sequences were aligned to the 

SILVA_v123 bacterial reference alignment at www.mothur.org. Chimeras were removed using 

uchime [35] and non-chimeric sequences were classified using the naïve Bayesian classifier of  
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Wang et al. [36]. Sequences were clustered into Operational Taxonomic Units (OTUs) at the 0.03 

threshold (species level). OTU sequence representatives and taxonomy were imported (BIOM format) 

into QIIME [37] for subsequent analyses. The mothur OTU table was filtered to a minimum of 2 

observations (sequences) per OTU. Samples were subsampled (rarefaction analysis) to the smallest 

sample size (1,916 sequences) to remove the effect of sample size bias on community composition. 

Trees for phylogenetic diversity calculations were constructed using FastTree [38]. Taxonomic 

alpha-diversity was estimated using the number of observed OTUs and the Chao1, Simpson, Fisher 

and Shannon indexes. Phylogenetic alpha-diversity (PD) was calculated by the Faith’s phylogenetic 

diversity index [39]. Similarly, both taxonomic (Bray-Curtis and Euclidean) and phylogenetic 

(unweighted and weighted unifrac) beta-diversity metrics were calculated. Relatedness among 

samples was assessed using Procrustes (only weighted unifrac distances), PCoA ordination and 

neighbor-joining (NJ) clustering analyses. Alpha- and beta-diversity metrics were compared between 

samples grouped by DNA extraction kit (Qiagen versus Norgen) using the Kruskal-Wallis test and a 

non-parametric version of the t-test. Taxonomic and phylogenetic distances were also compared 

among groups using the non-parametric PERMANOVA and adonis tests from the vegan R’s  

library [40]. Sample pairs were also compared using Fisher’s exact test. Significance was determined 

through 10,000 permutations. Bonferroni or Benjamini-Hochberg FDR multiple test correction 

methods were applied. All analyses were performed in mothur, QIIME, and RStudio [41]. Sequence 

data have been uploaded to the GenBank under SRA accession number SRP069020. 

3. Results and Discussion 

3.1. Sequences and OTUs 

Total DNA from 30 nasal washes corresponding to 30 asthmatic children was extracted using 

Qiagen and Norgen kits and analyzed via MiSeq sequencing of 16S rRNA V4 amplicons. Norgen 

samples generated a total of 637,624 sequences ranging from 2,016 to 51,194 sequences per sample 

(mean = 21,987) after quality control analyses and OTU filtering. While Qiagen samples generated a 

total of 480,443 sequences ranging from 1,916 to 53,966 sequences per sample (mean = 16,567) after 

quality control and OTU filtering. The lower read yield of the Qiagen approach might result from 

DNA loss during column purification (i.e., differences in the affinities of the silica gel membrane 

inside the spin columns). Sequence yield variation across samples was weakly correlated [Pearson 

correlation coefficient (r) = 0.236, n.s.] and not significantly different (paired t-test) between DNA 

extraction methods. The mothur pipeline identified 69–309 OTUs (mean = 165) per sample in the 

Norgen sample group and 38–282 OTUs (mean = 145) per sample in the Qiagen sample group. 

Interestingly, observed OTU estimates across samples were strongly correlated (r = 0.732***) and 

significantly different (paired t-test; P = 0.011) between commercial kits. Only 2.8% and 2.85% of 

the OTUs were unclassified at the genus level in the Norgen and Qiagen groups, respectively. 

3.2. Microbial composition 

Nasopharyngeal microbiomes in Norgen (N) and Qiagen (Q) kits were dominated by the 

following eight genera: Moraxella (N = 24.9%, Q = 26.8%), Staphylococcus (N = 25.1%, Q = 

12.5%), Corynebacterium (N = 7.6%, Q = 9.5%), Haemophilus (N = 7.0%, Q = 9.0%), Prevotella (N 
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= 5.4%, Q = 6.5%), Streptococcus (N = 5.2%, Q = 7.2%), Dolosigranulum (N = 4.6%, Q = 7.3%) 

and Fusobacterium (N = 4.2%, Q = 4.1%) (see Figure 1). The hard-to-lyse Gram-positive genus 

Staphylococcus showed the largest difference in microbial proportions between DNA extraction 

methods and those proportions were significantly different (Fisher’s exact test; effect size ≤ 5%;  

P < 0.05) in three of the sample pairs compared. Those same three sample pairs showed the largest 

dissimilarity in the beta-diversity analyses below. Both of our extraction procedures included a 15-

minute pre-incubation with the same lysozyme to lyse Gram-positive bacteria, but the lysis buffer 

used in each protocol was different. Differences in cell wall composition and structure can lead to 

variations in bacterial susceptibility to different lysis procedures [14]. Hence, we suspect that the 

Norgen Lysis Solution + lysozyme buffer is probably more effective than the Qiagen ATL + 

lysozyme buffer at lysing Gram-positive bacteria. 

 

Figure 1. Taxonomic profiles of Norgen (N) and Qiagen (Q) nasopharyngeal 

microbiome pairs from 30 asthmatic children. Only the 28 most abundant bacterial 

genera are shown. 

All the bacterial genera dominating the nasopharynges of asthmatic children and adolescents in 

this study (see green spheres in Figure 2) have also been detected in previous 16S metataxonomic 

studies of nasal microbiotas in infants [18,19,29,42] and adults [43–45] with and without respiratory 

infections, but in different proportions. 
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Figure 2. 3D Principal Coordinates Analysis (PCoA) of weighted unifrac distances 

between Norgen (red) and Qiagen (blue) samples. Green spheres show the more 

prevalent genera in the different areas of the PCoA plot. 

3.3. Microbial diversity 

Microbial profiles varied slightly between sample pairs (Figure 1), but alpha-diversity indices 

(Figure 3) did not significantly varied (paired t-test) between kits. 

 

Figure 3. Box plots of alpha-diversity indices comparing Norgen and Qiagen samples. 
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Beta-diversity ordination analysis of PCoA showed low dissimilarities between Norgen and 

Qiagen microbiomes for all distances tested (Figure 2). Similarly, no significant differences in 

community composition (PERMANOVA and adonis tests) were observed between both groups. At 

the genus and OTU level, microbial abundances did not significantly vary between kits (Kruskal-

Wallis test). Procrustes analysis comparing PCoA plots of Norgen and Qiagen microbiomes showed 

low dissimilarity (M
2
 = 0.173; P < 0.001) between them (Figure 4), with most pairs connected by 

short bars. This implies that the same beta diversity conclusions could be drawn from either data set. 

Finally, clustering analyses based on four different distances also showed that most microbiome 

sample pairs clustered together according to patient (see Figure 5), with 3 out of 30 microbiome pairs 

falling in distant clusters. These same three pairs also showed the highest dissimilarity in the 

Procrustes analysis (Figure 4). However, their differences were not significant (weighted unifrac test) 

after FDR correction. 

 

Figure 4. Procrustes analysis of Norgen and Qiagen samples. Intra-patient sample pairs 

are connected by a line, the white end indicating its Norgen origin and the red end 

indicating its Qiagen origin. 

PC2	(27.7%)	

PC1	(32.5%)	

PC3	(12.6%)	
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Figure 5. Neighbor-joining tree of weighted unifrac distances between Norgen (N) and 

Qiagen (Q) samples. Distant sample pairs are colored. 

Previous studies comparing DNA extraction methods in mock communities (i.e., a mixture of 

microbes created in vitro to simulate the composition of a microbiome sample), oral and 

bronchoalveolar lavages [11,15,46,47] revealed that DNA yield and bacterial species representation 

varied with DNA extraction methods. However, kit-based extractions showed less technical variation 

than non-commercial methods – presumably due to the use of premade buffers and purification 

columns which likely reduce technical error. Those studies then suggested that DNA preparation 

methods have a profound effect on microbial diversity estimation, and implied that samples prepared 

with different protocols may not be suitable for comparative metagenomics or metataxonomics. 

Similarly, several 16S metataxonomics studies of the gut microbiota have also revealed significantly 

large community differences between extraction methods [12,48]. Although a recent systematic 

comparison [49] of five DNA extraction methods based on 16S V4 amplicon data (like in our study) 

showed that the largest portion of variation (34%) in gut bacterial profiles was attributed to 

differences between subjects, with a smaller proportion of variation (9%) associated with DNA 

extraction method and intra-subject variation. This study did not detect significant differences 

(paired t-test) in alpha-diversity between extraction methods, while beta-diversity estimates 

(PERMANOVA and adonis test) varied significantly between most of the estimators. As for the oral 

cavity, other study comparing two DNA extraction methods in the analysis of salivary bacterial 

communities [14] also showed a high degree of congruence in alpha-diversity between extraction 

methods; the same study revealed significant differences in the structure of the microbiotas. As in all 

studies above, our analyses of the nasopharyngeal microbiota using two commercial DNA extraction 



116 

AIMS Microbiology  Volume 2, Issue 2, 108-119. 

kits also revealed significant differences (t-test; P < 0.05) in sequence depth and OTU count. 

Similarly to Lazarevic et al. and Mackenzie et al. [14,49], we did not see significant differences in 

alpha-diversity between groups. Our intra-patient analysis showed significant differences (Fisher’s 

exact test) in bacterial proportions in three sample pairs (see Fig. 5) for some of the genera (e.g., 

Staphylococcus). However, contrary to what has been reported in previous studies, our 16S 

metataxonomic analysis of nasal washes did not reveal significant differences in community 

structure between groups of samples extracted via Norgen and Qiagen kits.  

4. Conclusion 

Our 16S NGS analysis of nasopharyngeal washes from 30 asthmatic children suggests that 

nasopharyngeal microbial profiles are congruent between column-based chromatography kits and 

supports their comparison across studies. Cheaper and easier-to-use commercial DNA extraction kits 

are constantly being developed. Such kits allow researchers to quickly and efficiently extract DNA, 

with minimal clean-up steps before amplification. We hope the methods examined and results 

generated in this study contribute to the ongoing debate regarding DNA extraction standardization 

and reproducibility in human subjects. 
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