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The temporal version of the pediatric sepsis biomarker risk model (tPERSEVERE) estimates the risk of a
complicated course in children with septic shock based on biomarker changes from days 1 to 3 of septic shock.
We validated tPERSEVERE performance in a prospective cohort, with an a priori plan to redesign tPERSEVERE
if it did not perform well. Biomarkers were measured in the validation cohort (n = 168) and study subjects
were classified according to tPERSEVERE. To redesign tPERSEVERE, the validation cohort and the original deriva-
tion cohort (n = 299) were combined and randomly allocated to training (n = 374) and test (n = 93) sets.
tPERSEVERE was redesigned using the training set and CART methodology. tPERSEVERE performed poorly in
the validation cohort, with an area under the curve (AUC) of 0.67 (95% CI: 0.58–0.75). Failure analysis revealed
potential confounders related to clinical characteristics. The redesigned tPERSEVERE model had an AUC of 0.83
(0.79–0.87) and a sensitivity of 93% (68–97) for estimating the risk of a complicated course. Similar performance
was seen in the test set. The classification tree segregated patients into two broad endotypes of septic shock
characterized by either excessive inflammation or immune suppression.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Septic shock is a dynamic clinical and biological syndrome (Cohen
et al., 2015). Patient outcomes are highly variable, reflecting a complex,
time-dependent interplay between inflammation, immunity, pathogen-
related factors, patient heterogeneity, and therapeutic interventions.
We have attempted to navigate this complexity at the individual patient
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level by developing biomarker-basedmodels to estimate the probability
of poor outcomes in patientswith septic shock (Alder et al., 2014;Wong
et al., 2012, 2014a,b; Kaplan and Wong, 2011).

Analogous to longstanding concepts in the oncologyfield, we contend
that understanding baseline probability of poor outcome is fundamental
to clinical practice and research in the field of septic shock. Prognostic
models that reliably estimate the risk of poor outcome have the potential
to serve as tools for enrichment of clinical trials, inform individual patient
decision-making, to serve as a benchmark for quality improvement ef-
forts, and to facilitate risk-stratified analyses of clinical data. Further,
such models have the potential to provide insight regarding the patho-
genesis of septic shock and how it varies among different patients.

The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) incorpo-
rates a panel of biomarkers and age into a decision tree estimating the
baseline risk of mortality in children with septic shock (Wong et al.,
2012, 2014b). The PERSEVERE biomarkers are proteins measured in
the blood compartment on day 1 of presentation to the intensive care
unit with septic shock. To reflect change in risk over time, we developed
a temporal version of the model (tPERSEVERE) (Wong et al., 2014c).
tPERSEVERE considers how the PERSEVERE biomarker concentrations
change from day 1 to day 3 of septic shock, and how these changes
are associated with poor outcome.

We envisioned that a reliable temporal model could potentially
serve as a monitor for therapeutic efficacy, in combination with tradi-
tional clinical parameters. For example, if themodel signals a decreasing
risk for poor outcome over time, this could be indicative of therapeutic
efficacy. Alternatively, if themodel signals increasing risk or unchanged
risk from a high baseline risk, this could indicate lack of efficacy and
could potentially trigger a reassessment of the therapeutic regimen.

Models such as tPERSEVERE require prospective testing in order
to assess validity and generalizability. In the current study, we prospec-
tively tested the performance of tPERSEVERE in an independent valida-
tion cohort, and use the results to explore how biological variation may
be associated with the pathogenesis of poor outcomes in septic shock.

2. Methods

2.1. Study Subjects and Data Collection

The validation cohort consisted of 168 subjects prospectively
enrolled since the initial derivation of tPERSEVERE. The protocol for
collection and use of biological specimens and clinical data was
approved by the Institutional Review Boards of each of 18 participating
institutions. Children ≤18 years of age admitted to the pediatric
intensive care unit (PICU) and meeting pediatric-specific consensus
criteria for septic shock were eligible for enrollment (Goldstein et al.,
2005; Wong et al., 2007). The only exclusion criterion was the inability
to obtain informed consent, which was obtained from parents or legal
guardians prior to any data or sample collection.

Serum samples were obtained within 24 h of first meeting the
criteria for septic shock in the PICU,whichwas typically at presentation.
These are referred to as “day 1” samples. “Day 3” sampleswere collected
48 h after the day 1 samples. Clinical and laboratory data were collected
daily while in the PICU. Organ failure data were tracked up to day seven
of septic shock using previously published criteria (Goldstein et al.,
2005). Mortality was tracked for 28 days after enrollment. Complicated
course was defined as the persistence of two or more organ failures at
day seven of septic shockor 28-daymortality (Wonget al., 2015). Illness
severity was estimated using PRISM scores (Pollack et al., 1997). Base-
line mortality probability was estimated using PERSEVERE (Wong
et al., 2012, 2014b).

2.2. PERSEVERE Biomarkers

PERSEVERE includes C–C chemokine ligand 3 (CCL3), interleukin 8
(IL8), heat shock protein 70 kDa 1B (HSPA1B), granzyme B (GZMB),

and matrix metallopeptidase 8 (MMP8) (Wong et al., 2012). Serum
concentrations of these biomarkers were measured using a multi-plex
magnetic bead platform (MILLIPLEX™MAP, EMDMillipore Corporation,
Billerica, MA). Biomarker concentrations were measured in a Luminex®
100/200 System (Luminex Corporation, Austin, TX), according theman-
ufacturers' specifications. Assay performance datawere previously pub-
lished (Wong et al., 2012).

2.3. Statistical Analysis and Validation of tPERSEVERE

Initially, data are described using medians, interquartile ranges,
frequencies, and percentages. Comparisons between groups used the
Mann–Whitney U-test, Chi-square, or Fisher's exact tests as appropriate.
Descriptive statistics and comparisons used SigmaStat Software (Systat
Software, Inc., San Jose, CA).

Each study subject was assigned a probability of a complicated
course using the previously published tPERSEVERE model (Wong
et al., 2014c). tPERSEVERE performance is reported using diagnostic
test statistics with 95% confidence intervals computed using SPSS 23.0
(IBM Corporation, Armonk, NY), R (base version 3.1.1) and package
epiR (version 0.9–62) (R Core Team, 2014; Stevenson et al., 2015).

2.4. Redesigning tPERSEVERE

A priori, we determined that if the area under the receiver operating
curve was less than 0.7 in the validation cohort, we would redesign
tPERSEVERE. Initially, we explored reasons for failure by comparing
the validation cohort to the original cohort, and by characterizing false
negatives and comparing them to true positives. Then, to redesign
tPERSEVERE we combined the 168 prospectively enrolled subjects,
and the 299 previously reported subjects. From this pooled cohort
(n = 467) we randomly selected 80% of the subjects for a training
cohort (n= 374) and the remaining 20% were retained as a test cohort
(n = 93).

The modeling procedures for redesigning tPERSEVERE used CART
methodology (Salford Predictive Modeler v6.6, Salford Systems, San
Diego, CA) (Che et al., 2011; Muller and Mockel, 2008). The primary
outcome variable for themodelingwas a complicated course, as defined
above (Wong et al., 2015). Using complicated course as the primary
outcome variable allows for the exploration of association between
temporal biomarker changes and nuances of sepsis severity beyond
the dichotomy of “alive” vs. “dead”. Continuous, predictor variables for
themodelingprocedure included the PERSEVERE-basedmortality prob-
ability, day 1 and day 3 PERSEVERE biomarker values, age, and a derived
variable termed “delta”, which subtracted the day 1 value for a given
biomarker from the respective day 3 value. Dichotomous predictor
variables included gender, and the presence of any co-morbidity, malig-
nancy, immune suppression, or previous bone marrow transplantation.
Weighting of cases and the addition of cost formisclassificationwere not
used in the modeling procedures. The code and data used to generate
the model is available from the authors.

2.5. Funding

The study was funded by the National Institutes of Health, National
Institute of General Medical Sciences. The funder played no other role
in the study, in the writing of the manuscript, or in the decision to
submit the manuscript.

3. Results

3.1. Prospective Validation of tPERSEVERE

Table 1 shows the demographic and clinical characteristics of the
validation cohort (n = 168). Sixty-three subjects (38%) had a compli-
cated course. Among these, 25 (40%) died by study day 28. Compared
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to subjects with a non-complicated course, those in the complicated
course group had a higher PRISM score, a higher PERSEVERE mortality
probability, and a greater proportion had immune suppression or had
undergone previous bonemarrow transplantation. No other differences
were noted.

The validation cohort subjects were classified according to the
tPERSEVEREdecision tree. For estimating the probability of a complicated
course, tPERSEVERE had an area under the curve (AUC) of 0.67 (95% CI:
0.58–0.75). Table 2 shows the diagnostic test characteristics of
tPERSEVERE in the validation cohort.

3.2. Failure Analysis

The diagnostic test characteristics of tPERSEVERE for estimating the
probability of a complicated course in the validation cohort were poor.
We therefore conducted analyses to determine what factors may have
contributed to the poor performance of tPERSEVERE.

We first compared the clinical characteristics of the study subjects
in the original derivation cohort (Wong et al., 2014c). to that of the
validation cohort. The validation cohort had a higher prevalence of a
complicated course (38%) than the original derivation cohort (23%, p b

0.001). This difference may have been due to a higher comorbidity
burden in the validation cohort, compared to the derivation cohort
(68% vs. 42%; p b 0.05). Of note, a higher proportion of subjects in the
validation cohort had immune suppression (25% vs. 13%; p b 0.05) or
malignancy (21% vs. 9%, p b 0.05), compared to the derivation cohort
subjects.

Table 3 characterizes the false negative and true positive subjects
within the validation cohort. The true positive subjects had a higher
median PRISM score and a greater proportion of males, compared to
the false negative subjects. No other differences were noted.

3.3. Redesigning tPERSEVERE

tPERSEVERE may have performed poorly in the validation cohort
because of differences in the clinical characteristics between the deriva-
tion and the validation cohort subjects. Further, the difference in illness
severity between the false negative and true positives subjects suggests
that tPERSEVERE may not perform well across a wide spectrum of
illness severity, as measured by PRISM. We therefore redesigned
tPERSEVERE with the goals of improved performance across a diverse
cohort of children with septic shock and providing biological insight
regarding poor outcomes.

Table 4 shows the demographic and clinical characteristics of the
training and test sets for the modeling procedures. Subjects in the test
set were older and had a higher mortality rate, compared to subjects
in the training set. No other differences were noted.

Fig. 1 shows tPERSEVERE based on the training set. Baseline
PERSEVERE mortality risk occupied the first level decision rule. Day 1
and day 3 IL8 values, delta IL8, day 1 and day 3 CCL3 values, and day 3
MMP8 values also contributed to the predictive capacity of the
redesigned tPERSEVERE model. None of the other predictor variables
considered in the modeling process contributed to predictive capacity.

The redesigned tPERSEVEREmodel had five low risk terminal nodes
(0.0% to 15.0% risk of complicated course; nodes 1, 3, 5, 7, and 9), four
intermediate risk terminal nodes (28.9% to 46.7% risk of complicated
course; nodes 2, 4, 6, and 8), and two high risk terminal nodes (N50%
risk of complicated course; nodes 10 and 11). Among the 169 subjects
classified as low risk, 162 (96%) did not have a complicated course.
Among the 117 subjects classified as intermediate risk, 46 (39%) had a
complicated course. Among the 88 subjects classified as high risk, 52
(59%) had a complicated course. Table 5 shows the diagnostic test char-
acteristics of the redesigned tPERSEVERE model for estimating the risk
of a complicated course in the training set.

Table 1
Demographic and clinical characteristics of the validation cohort.

Non-complicated
course

Complicated
course

N (%) 105 (63) 63 (38)
Median age, years (IQR) 5.3 (1.8–12.8) 4.8 (1.1–14.9)
Males, # (%) 60 (57) 37 (59)
28-day mortality, # (%) 0 (0) 25 (40)
Median PRISM score (IQR) 10 (7–15) 13 (8–21)1

PERSEVERE mortality probability (95% C.I.) 6.5 (4.6–8.4) 12.9 (9.5–16.3)2

# With gram negative bacteria (%) 27 (26) 15 (24)
# With gram positive bacteria (%) 19 (18) 14 (22)
# With other pathogen isolated (%) 9 (9) 5 (8)
# With no pathogen identified (%) 50 (48) 29 (46)
# With comorbidity (%) 67 (64) 47 (75)
# With malignancy (%) 20 (19) 16 (25)
# With immune suppression (%) 20 (19) 22 (35)3

# With bone marrow transplantation (%) 4 (4) 10 (16)3

1 p b 0.05 vs. non-complicated course; Rank sum test.
2 p b 0.05 vs. non-complicated course; t-test.
3 p b 0.05 vs. non-complicated course; Chi-square.

Table 2
Test characteristics of tPERSEVERE for estimating the probability of a compli-
cated course in the validation cohort.

No. of false positives 38
No. of true positives 42
No. of true negatives 67
No. of false negatives 21
Sensitivity 67% (54–78)
Specificity 64% (54–73)
Positive predictive value 52% (41–64)
Negative predictive value 76% (66–84)
+Likelihood ratio 1.84 (1.35–2.51)
−Likelihood ratio 0.52 (0.36–0.76)
AUC 0.67 (0.58–0.75)

Table 3
Comparison of the false negative and true positive subjects in the validation cohort.

VARIABLE False negatives True positives p Value

N 21 42 =
PRISM; median (IQR) 10 (8–14) 17 (8–22) 0.031
Age; median (IQR) 4.9 (2.6–13.8) 4.4 (0.8–15.2) 0.370
Deaths; # (%) 5 (24) 20 (48) 0.069
Males; # (%) 8 (38) 29 (69) 0.019
Malignancy; # (%) 6 (29) 10 (23) 0.682
Immune suppression; # (%) 5 (24) 17 (40) 0.191
Bone marrow transplantation; # (%) 1 (5) 9 (21) 0.144

Table 4
Demographic and clinical characteristics of the training and test sets for re-designing
tPERSEVERE.

Training set Test set

N 374 93
Median age, years (IQR) 3.0 (1.0–7.5) 5.6 (1.6–9.9)1

Males, # (%) 220 (58) 55 (59)
28-day mortality, # (%) 31 (8) 15 (16)2

# with complicated course, (%) 105 (28) 26 (28)
Median PRISM score (IQR) 12 (8–20) 11 (8–17)
PERSEVERE mortality probability (95% C.I.) 9.1 (7.6–10.6) 9.9 (6.9–12.9)
# With gram negative bacteria (%) 91 (24) 22 (24)
# With gram positive bacteria (%) 85 (23) 20 (22)
# With other pathogen isolated (%) 41 (11) 10 (11)
# With no pathogen identified (%) 157 (42) 41 (44)
# With comorbidity (%) 194 (52) 46 (49)
# With malignancy (%) 50 (13) 14 (15)
# With immune suppression (%) 66 (18) 14 (15)
# With bone marrow transplantation (%) 16 (4) 8 (9)

1 p b 0.05 vs. training set; Rank sum test.
2 p b 0.05 vs. training set; Chi-square.
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3.4. Testing the Redesigned tPERSEVERE Model

Fig. 2 shows the classification of the 93 subjects in the test set,
according to the redesigned tPERSEVEREmodel. Among the 46 subjects
classified as low risk, 43 (93%) did not have a complicated course.
Among the 25 subjects classified as intermediate risk, 25 (36%) had a
complicated course. Among the 22 subjects classified as high risk, 14
(64%) had a complicated course. Table 5 shows the diagnostic test
characteristics of the redesigned tPERSEVERE model for estimating the

risk of a complicated course in the test set. Based on the performance
of the redesigned tPERSEVERE model, we estimate that if 350 subjects
were included in a prospective evaluation and the accuracy remained
at 60% with a sensitivity of 93%, the confidence intervals would be
sufficiently narrow to conclude validity at about ±5%.

4. Discussion

Prospective testing of clinical risk models is imperative for assessing
validity. We tested the performance of tPERSEVERE prospectively and
found that it performed poorly. One possible reason for failure is that
the originally derived model was mathematically over fit, without
providing any biological insight (Wong et al., 2014c). Another possible
reason is that clinical characteristics having the potential to affect the
risk of poor outcome differed between the derivation and validation
cohorts, including the prevalence of a complicated course. Finally, our
failure analysis suggested that tPERSEVERE performed poorly in those
subjects with lower PRISM-based illness severity who went on to
develop a complicated course. Accordingly, we redesigned tPERSEVERE
using a modeling approach that included these potential confounders.

We attempted to account for differences in disease severity by com-
bining the derivation and validation cohorts, and by randomly selecting
subjects for training and test sets. This generated two groups of subjects
with similar complicated course prevalence. The two groups were also
well matched for the majority of clinical variables examined, except

Fig. 1. The redesigned tPERSEVERE classification tree. The classification tree includes the PERSEVERE-based mortality probability, day 1 and day 3 interleukin 8 (IL8) concentrations, the
delta IL8 value, day 1 and day 3 C–C chemokine ligand 3 (CCL3) concentrations, and the day 3matrixmetallopeptidase 8 (MMP8) concentration. The biomarker concentrations are shown
in ng/ml. The root node provides the total number of subjects in the training set, and the number of subjects with and without a complicated course, with the respective rates. Each
daughter node provides the respective decision rule criterion and the number of subjects with and without a complicated course, with the respective rates. A negative value for a
“delta” occurs when the biomarker level is, on average, decreasing. Terminal nodes (TN) TN1, TN3, TN5, TN7, and TN9 are low risk terminal nodes (0.0% to 15.0% risk of complicated
course). TN2, TN4, TN6, and TN8 are intermediate risk terminal nodes (28.9% to 46.7% risk of complicated course). TN10 and TN11 are high risk terminal nodes (≥50% risk of complicated
course).

Table 5
Test characteristics of the redesigned tPERSEVERE model for estimating the probability of
a complicated course in the training and test sets.

Training set Test set

No. of false positives 107 24
No. of true positives 98 23
No. of true negatives 162 43
No. of false negatives 7 3
Sensitivity 93% (86–97) 88% (69–97)
Specificity 60% (54–66) 64% (51–75)
Positive predictive value 48% (41–55) 49% (34–64)
Negative predictive value 96% (92–98) 93% (82–99)
+Likelihood ratio 2.35 (2.01–2.74) 2.47 (1.74–3.50)
−Likelihood ratio 0.11 (0.05–0.23) 0.18 (0.06–0.53)
AUC 0.83 (0.79–0.87) 0.84 (0.75–0.92)
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for age and mortality. To further account for differences in clinical
phenotype, we considered comorbidity variables, age, and gender in
the modeling procedures. None of these clinical variables added to the
predictive capacity of the redesigned tPERSEVERE model.

The original version of tPERSEVERE contains only the absolute
day 1 and day 3 PERSEVERE biomarker values. To redesign a better
performing model that could also provide biological insight regarding
the development of poor outcome in children with septic shock,
we considered two additional biomarker-based variables. First, we con-
sidered the PERSEVERE-based mortality probability. This is a composite
variable reflecting day 1 biomarker values for CCL3, IL8, HSPA1B, GZMB,
and MMP8, and age (Wong et al., 2012, 2014b). Second, we considered
the possibility that a derived variable reflecting the changes in biomarker
values from day 1 to day 3, could provide biological information beyond
the absolute day 1 and day 3 biomarker values.

The redesigned tPERSEVERE model performed well in the test set.
Beyond risk prediction, we suggest that the redesigned model provides
useful biological information regarding the risk of a complicated course
in children with septic shock. Current paradigms for understanding the
pathophysiology of sepsis place patients into two broad endotypes
(Hotchkiss and Sherwood, 2015; Hutchins et al., 2014; Skrupky et al.,
2011). One endotype involves patients with excessive inflammation.
In these patients, inflammatory mechanisms intended for the eradica-
tion of infection become excessive and thereby cause collateral damage
to host tissues, which in turn leads to organ injury and higher risk for
poor outcome. The other endotype involves patients with ineffective
inflammation and a state of relative immune suppression. These
patients are also at risk for poor outcome because they are unable to
effectively clear infections or are at risk for secondary infections. These

two endotypes represent extremes of a spectrum; it is likely that
many patients with sepsis reside somewhere within this spectrum. In
addition, many patients move along this spectrum during the course
of illness.

IL8 and CCL3 are the major chemokines responsible for recruitment
and activation ofwhite blood cells and are thus keymediators of inflam-
mation (Aziz et al., 2013). In murinemodels of experimental sepsis, the
respective homologs for IL8 and CCL3 increase in proportion to sepsis
severity (Ebong et al., 1999). Subjects occupying the right side of the
redesigned decision tree (Fig. 1) had an intermediate to high
PERSEVERE-based mortality risk. Among these subjects, if IL8 levels
remained relatively high on day 3 (N450 ng/ml, terminal node 11) or
if the day 1 CCL3 level was greater than 100 ng/ml (terminal node
10), there was a greater than 50% probability of a complicated course.
Conversely, subjectswith a high PERSEVERE-basedmortality probability,
but a relatively low day 3 IL8 concentration (≤450 ng/ml) and a day 1
CCL3 concentration less than 100 ng/ml (terminal node 9), had a much
lower probability (15%) of a complicated course. Thus, excessive inflam-
mation in the presence of high baseline risk portends poor outcome,
while lesser inflammation despite high baseline risk is associated with
diminishing risk. These observations are consistent with the sepsis
endotype characterized by excessive inflammation.

Subjects occupying the left side of the redesigned decision tree had a
low PERSEVERE-based mortality risk. In these subjects, if IL8 decreased
by at least 300ng/ml fromday 1 to day 3, the probability of a complicated
course was 6.3% in the context of a day 1 IL8 concentration ≤525 ng/ml
(terminal node 1), but 44.4% in the context of a relatively high day 1
IL8 concentration (N525 ng/ml, terminal node 2). In other words, rela-
tively lower baseline IL8 concentrations that are decreasing portend

Fig. 2. Classification of the test set according to the redesigned tPERSEVERE model. The test set subjects (n= 93) were classified according to the redesigned tPERSEVERE model without
any modifications. The same conventions apply to the decision tree as described for Fig. 1.

2091H.R. Wong et al. / EBioMedicine 2 (2015) 2087–2093



lower risk than relatively higher baseline IL8 concentrations that are de-
creasing. This suggests those subjectswhose inflammatory state is exces-
sive at baseline do poorly, even though inflammation may be
diminishing over the first few days. In these same low-baseline-risk sub-
jects, subjects with a day 1 IL8 concentration N125 ng/ml and a day 3 IL8
concentration of N350 ng/ml had a 42.8% probability of a complicated
course (terminal node 8). These observations are also consistent with
the sepsis endotype characterized by excessive inflammation and, in par-
ticular, suggest evolving excessive inflammation.

In contrast, subjects occupying terminal nodes 5, 6, and 7 may
represent the sepsis endotype characterized by immune suppression.
In these subjects higher CCL3 concentrations on day 3 were associated
with a low risk of a complicated course (terminal nodes 5 and 7),
whereas subjects with relatively lower CCL3 concentrations on day 3
had a higher risk of a complicated course (terminal node 6). It may be
that these subjects have insufficient recruitment of white blood cells
and therefore had a state of relative immune suppression.

Finally, subjects in terminal nodes 3 and 4 may represent patients
along the spectrum of excessive inflammation and immune suppres-
sion. These patients are defined initially by a low PERSEVERE-based
mortality risk, a relatively low starting IL8 and a low day 3 CCL3 concen-
tration. In these subjects, day 3 MMP8 differentiates between those
at low risk and those at intermediate risk of a poor outcome. This is
consistent with data from murine models exploring the role of MMP8
in sepsis. In these studies, genetic ablation or pharmacological inhibition
of MMP8 conferred a survival advantage in mice subjected to sepsis,
and this effect was associated with decreased activation of the
pro-inflammatory transcription factor, NF-κB, and other indices of
inflammation (Solan et al., 2012; Atkinson et al., 2015).

We note the limitations of the study. The process of redesigning and
testing the tPERSEVERE model was based on pooling of all available
subjects, random selection, and subsequent allocation into training and
test sets. This process could have introduced unknown or unintended
biases. It is therefore possible that the redesigned model is over fit,
despite its good performance in the test set. The redesigned model
requires testing with a fully independent validation cohort. Our
interpretation of the biological information that the model might be
providing is based on existing principles of potential sepsis endotypes
and data from murine models of sepsis, but is speculative nonetheless.
It will be important in future studies to directly determine the relative
states of inflammation and immune suppression in subjects allocated
to the respective terminal nodes potentially associated with excessive
inflammation or immune suppression.

In conclusion, tPERSEVERE performed poorly upon prospective
testing. We identified potential confounders leading to failure, and
this prompted a redesign of the tPERSEVERE model using randomly
selected training and test sets. The redesigned model performed well
in the test set, and is consistent with current paradigms of sepsis
endotypes involving excessive inflammation and immune suppression.
The redesigned model requires prospective testing in a validation
cohort and functional studies to confirm the validity of our interpreta-
tions of the biological information provided by the model. Successful
validation could position tPERSEVERE as amonitor of therapeutic effica-
cy in patients with septic shock and as a tool for understanding septic
shock endotypes predicated on patterns of inflammation and immunity.
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