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METHODOLOGY ARTICLE Open Access

Clinical PathoScope: rapid alignment and filtration
for accurate pathogen identification in clinical
samples using unassembled sequencing data
Allyson L Byrd1,2†, Joseph F Perez-Rogers1,3†, Solaiappan Manimaran3, Eduardo Castro-Nallar4, Ian Toma5,
Tim McCaffrey5, Marc Siegel6, Gary Benson1,7,8, Keith A Crandall4* and William Evan Johnson1,3*

Abstract

Background: The use of sequencing technologies to investigate the microbiome of a sample can positively impact
patient healthcare by providing therapeutic targets for personalized disease treatment. However, these samples
contain genomic sequences from various sources that complicate the identification of pathogens.

Results: Here we present Clinical PathoScope, a pipeline to rapidly and accurately remove host contamination,
isolate microbial reads, and identify potential disease-causing pathogens. We have accomplished three essential tasks
in the development of Clinical PathoScope. First, we developed an optimized framework for pathogen identification
using a computational subtraction methodology in concordance with read trimming and ambiguous read
reassignment. Second, we have demonstrated the ability of our approach to identify multiple pathogens in a
single clinical sample, accurately identify pathogens at the subspecies level, and determine the nearest phylogenetic
neighbor of novel or highly mutated pathogens using real clinical sequencing data. Finally, we have shown that Clinical
PathoScope outperforms previously published pathogen identification methods with regard to computational speed,
sensitivity, and specificity.

Conclusions: Clinical PathoScope is the only pathogen identification method currently available that can identify
multiple pathogens from mixed samples and distinguish between very closely related species and strains in samples
with very few reads per pathogen. Furthermore, Clinical PathoScope does not rely on genome assembly and thus can
more rapidly complete the analysis of a clinical sample when compared with current assembly-based methods. Clinical
PathoScope is freely available at: http://sourceforge.net/projects/pathoscope/.

Background
Despite recent advances in diagnostic and preventative
medicine, infectious diseases still account for a large
proportion of the disease burden and mortality world-
wide, particularly in low-income areas and developing
countries [1]. Current clinical diagnostic tests for identi-
fying infection-causing pathogens utilize limited tech-
nologies such as polymerase chain reactions (PCR),
Sanger sequencing, or cell culture. These methods typic-
ally focus on identifying only a single pathogen at a time

and often lack the specificity required to distinguish be-
tween closely related species or strains of the same spe-
cies. Bacterial cultures can accurately identify culturable
pathogens, but usually require 4–5 days to complete and
cannot be conducted for all pathogens [2]. Microarray
technologies, such as the Virochip [3], have been shown
to be useful in the space of pathogen identification. Mi-
croarrays, such as these, are designed to detect known
pathogens through the use of high-sensitivity probes and
isotype novel pathogens using probes that map to con-
served genomic regions. While useful for broad spectrum
screening of clinical samples, this technology is limited in
that probes must be continually designed and updated to
support the ever-growing number of genomic sequences
in public databases.
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In recent years, researchers have taken advantage of
innovations in sequencing technologies to more rapidly
identify and characterize pathogens responsible for dis-
ease outbreaks, including the West Nile Virus [4], H1N1
influenza [5-7], cholera [8], Escherichia coli [9-12], Sal-
monella [13], and antibiotic resistant Klebsiella pneumo-
niae [14]. Traditionally, sequencing a single sample has
taken as long as several days or weeks using the most
common platforms. Recent commercial efforts, however,
have reduced this time to a few hours or days, projecting
within the next few years sequencing runs of less than
an hour with a cost of under one hundred dollars [15].
Once these technologies become widely accessible, the
use of sequencing as a diagnostic tool in the clinic will
have great potential for more personalized medical
applications. The rapid and accurate analysis of next-
generation sequencing data, however, remains a chal-
lenge for many reasons. The sheer volume of data, for
example, is difficult to analyze without significant com-
putational resources (e.g., a typical sequencing run on
the Illumina HiSeq 2500 can yield 300 million reads re-
quiring 30 GB of storage capacity and significant RAM re-
quirements for processing) [16]. Furthermore, DNA from
host genomes or commensal species will often dominate
clinical samples and sequencing error can swamp out
diagnostic signal. These challenges highlight the need for
the development of highly sensitive algorithms that can
distinguish among closely related pathogenic strains in a
computationally efficient manner.
Current sequencing-based diagnostic methods [17-23]

require thousands of reads from the pathogen and in-
clude computationally intensive steps such as genome
assembly, multiple genome alignments, extensive hom-
ology searches, and/or phylogeny estimation, with some
methods taking upwards of three days to complete a sin-
gle run [17]. Additionally, these methods fail to accur-
ately identify pathogens at the strain level and will often
assign ambiguously aligned reads to higher taxonomic
levels which may lead to a nonspecific or incorrect diag-
nosis and the administration of ineffective clinical treat-
ments. Such was the case during the European outbreak
of hemorrhagic Escherichia coli, which resulted in 3,800
infections and 54 deaths across 13 countries due to a 3-
week delay in appropriate intervention [9]. The chal-
lenges encountered when diagnosing viral and bacterial
pathogens in the clinic reinforce the need for a stream-
lined sequencing protocol and a highly sensitive compu-
tational method by which strain specific identification
can be rapidly achieved. By helping clinicians to direct
treatment and avoid misdiagnoses, the identification of
viral and bacterial pathogens in clinical samples will dir-
ectly benefit patients suffering from a variety of infec-
tious diseases [24]. In particular, assigning a viral rather
than bacterial cause to an infection may help alleviate

the antibiotic overuse that is common in clinical practice
today [25]. Recent editorials and reviews express con-
cern that analysis, rather than data generation, is likely
to be the limiting factor for sequence-based clinical
pathology; thus, clearly highlighting the need for ‘clinic-
ready’ software tools and approaches [2,26-29].
Here we present Clinical PathoScope, a rapid align-

ment and filtration pipeline for accurate viral and bacterial
pathogen identification using unassembled sequencing data.
Using a variety of clinical samples and simulated scenarios,
we demonstrate our method’s ability to differentiate be-
tween pathogens, identify multiple pathogens in a sin-
gle clinical sample, and identify the closest relative to
highly mutated and novel strains. Clinical PathoScope
builds on the previous success of PathoScope v1.0 [30],
which capitalizes on a Bayesian statistical framework to
process an alignment file and provide posterior prob-
ability profiles of organisms present. While PathoScope
v1.0 showed success when used with purified samples,
it was necessary to develop a method to remove poten-
tial contaminating sequences from the host and com-
mensal microbes for host-dominated clinical samples.
Clinical PathoScope incorporates the original Patho-
Scope algorithm into a novel pipeline that allows users
to go directly from metagenomic sequencing reads to a
list of organisms present in a sample in one easy step
and in a clinically relevant timeframe. For convenience,
we provide bacterial and viral databases curated from
NCBI; however, custom databases can easily be incor-
porated as well. Taken together, these features make
Clinical PathoScope the fastest and most accurate pipeline
currently in the literature for identifying strain-specific
pathogens in clinical samples without the need for gen-
ome assembly. Clinical PathoScope (version 1.0) is freely
available at: http://sourceforge.net/projects/pathoscope/.

Methods
In order to develop the Clinical PathoScope framework,
we have accomplished the following essential tasks for
pathogen identification in clinical samples: 1) selection
of the most appropriate alignment algorithm and param-
eters for optimal performance on clinical samples, 2)
evaluation of filtering approaches to efficiently remove
reads from a clinical sample that originated from host,
non-target, or non-pathogenic genomes, and 3) the evalu-
ation and comparison of Clinical PathoScope with existing
approaches using multiple real datasets [see Additional
file 1 for Clinical PathoScope development workflow]. De-
tails regarding the specific methods evaluated, pipeline
modules, and results observed are given in the subsequent
sections. Finally, we have implemented these results into a
highly sensitive and efficient pipeline that is user-friendly
and approachable by physicians and researchers without
the requirement of advanced computational expertise.
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Clinical PathoScope pipeline development & evaluation
The Clinical PathoScope pipeline consists of three pri-
mary steps: 1) optimized read alignment, 2) host and
non-target genome filtration, and 3) ambiguous read re-
assignment. We developed the optimized Clinical Patho-
Scope algorithm using a set of simulated clinical samples
(described below) and later validated our method and
compared our results against existing approaches using
multiple clinical datasets, some of which are original to
this publication.

Reference genome library curation and processing
One of the most important steps for the accurate identi-
fication of benign and pathogenic genomes is to build a
comprehensive genome library containing all species
and strains likely to be present in the sample. This is a
critical step as Clinical PathoScope can only identify or-
ganisms or their nearest neighbors if they are present in
the library. In order to maximize the characterization of
all reads within a given clinical sample, our method
aligns reads against three broad categories of reference
genomes. The human host library consisted of two se-
quences totaling 3.2 gigabase-pairs (Gbps); the GRCh37/
hg19 build of the human genome, as well as the human
ribosomal DNA sequence [GenBank:U13369]. The ribo-
somal reference was included in order to remove several
false positive alignments to viral genomes that share se-
quence similarity with human ribosomal RNA (a list of
these viral genomes is given in Additional file 2). The
bacterial library was downloaded from NCBI (ftp://ftp.ncbi.
nlm.nih.gov/genomes/Bacteria/all.fna.tar.gz, 12/15/12) and
contained 2,402 complete reference genomes and 1,759
plasmid sequences. In all, this bacterial library consisted of
7.7 Gbps of DNA sequence. Due to restrictions enforced
by some of the aligners with regard to index size, it was ne-
cessary to split this library into two smaller segments to fa-
cilitate proper alignment. Finally, the viral library was also
obtained from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/
Viruses/all.fna.tar.gz, 1/10/13). For genomes in which
multiple segments were available, all segments for a given
genome were concatenated into a single contiguous se-
quence with each segment separated by a series of null
characters (N’s). In total, the viral library contained 3,738
complete genomes and 110 megabase-pairs (Mbps) of total
sequence.

Generation of simulation study datasets
We simulated two sets of five in silico clinical samples to
represent a variety of clinical scenarios including infec-
tions with two or more disease causing and benign path-
ogens, infections with a pathogen having closely related
substrains (e.g. Human adenovirus), and infections with
highly mutated pathogens. The first set of simulated sam-
ples was used to evaluate several alignment algorithms

and to optimize the architecture of the Clinical Patho-
Scope pipeline. The second set was then used to evaluate
the efficacy of Clinical PathoScope alongside existing
technologies. Importance was placed on implementing
accurate mutation rates, genome diversity, and relative
compositions. Functioning as positive controls, these
data were essential to develop a robust pipeline for
pathogen identification. Each sample was composed of
human, bacterial, and viral sequences mimicking the
microbiota found in sequencing data from nasopharyngeal
samples during a respiratory tract infection [31,32]. Specif-
ically, 10 million 100-base reads were generated for each
sample with 90% of reads originating from the host tran-
scriptome (human RNA), 9% from bacterial genomes, and
1% from viral genomes. The first set of simulated samples
contained sequencing reads from five bacterial and six
viral genomes at various depths of coverage. This was es-
sential to determine how each aligner and pipeline archi-
tecture performed with respect to the number of reads
originating from each genome. The second set of simu-
lated samples was designed as a more challenging and
realistic dataset and was used to evaluate our optimized
approach. Each sample contained sequences from six viral
genomes and twenty-five bacterial genomes. The number
of reads originating from each viral genome ranged
from ten to 63,640. To determine a realistic bacterial land-
scape for these samples, we downloaded and aligned three
anterior nares samples [SRA: SRS011105, SRS012291,
SRS013637] from the Human Microbiome Project (http://
hmpdacc.org/HMASM/) and selected 25 of the most
common bacterial strains (19 unique species) to be in-
cluded in our simulation. The number of reads originating
from each bacterial genome was determined by sampling
a Gaussian distribution such that the number of bacterial
reads per sample totaled 900,000. Reference genomes for
each of the representative species were obtained from
NCBI’s RefSeq database [33] and samples were simulated
using the next-generation read simulator, Mason [34],
employing its ‘Illumina sequencing’ error-model. Previ-
ously published species or kingdom specific mutation
rates for SNPs and indels were applied to the human [35],
bacterial [36], and viral [37] genomes to accurately capture
the variability inherent in clinical samples. The simulated
datasets are available for download on the PathoScope
software distribution site and will be useful for bench-
marking and comparing future metagenomic analysis
pipelines. The specific parameters and code used to gener-
ate this dataset as well as accession numbers of reference
genomes and actual read proportions of each genome
within each sample are given in Additional file 3.

Alignment optimization
We evaluated and compared four publicly available
alignment algorithms (Bowtie2.0.0 [38], BWA 0.6.2 [39],
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PBLAT 2.0.0 [40], SOAP2 2.21 [41]) based on three cri-
teria, namely, 1) run time, 2) sensitivity and 3) specificity
by aligning our first set of five simulated samples against
the human, bacterial, and viral reference libraries de-
scribed above [see Additional file 4 for aligner evaluation
schematic]. Run time was measured as cpu minutes
using 8 cores and a single 2.3 GHz AMD Opteron pro-
cessor on the Boston University Medical Campus LinGA
cluster. Using the resulting alignment files and the
known origin of the reads, sensitivity was measured as
the number of true positives divided by the number of
true positives plus false negatives, and specificity was
measured as the number of true negatives divided by the
number of true negatives plus false positives. Our goal
was to identify the algorithm and parameters that pro-
vided the best balance of our three evaluation criteria.
Additionally, we examined the effect of varying the
length of each read on the number of reads correctly
aligned to the reference genomes using the first 25, 50,
75, and 100 base-pairs, as well as the full-length se-
quence. Evaluating variable read lengths served multiple
purposes: 1) determining whether aligning the entire
read was necessary, or if aligning a smaller segment of
the read performed just as well, 2) identifying optimal
sequence read size for future studies, and 3) evaluating
whether aligning a smaller portion of the read can replace
the need for a computationally intensive spliced-read
alignment algorithm for reads from host/filter genomes
that contain spliced gene transcripts. The version informa-
tion, run commands, and alignment results for each algo-
rithm and all parameters evaluated are included in
Additional file 5 and Additional file 6.

Filtration optimization
We employed a computational subtraction methodology
[42] in which reads are sequentially aligned against a series
of reference genomes to determine their origin. For our
purposes, we aligned reads against libraries of reference
genomes originating from human, bacteria, or viruses.
Within our pipeline, reads that align to the target library
(e.g. viral library for virus detection) are retained while
reads that align to the host (e.g. human library) and non-
target (e.g. bacterial library) sequences are removed. The
effects of varying the order of subtraction were examined
by comparing the resulting alignment sensitivity, specifi-
city, and pipeline run time using all six permutations of
our three libraries. Additionally, we evaluated the effect of
using the PathoScope expectation maximization (EM) al-
gorithm [30] to minimize false positive mappings by reas-
signing reads with ambiguous alignments to their correct
genome of origin. A detailed diagram of the overall experi-
mental design is shown in Additional file 1. The subtrac-
tion methods evaluated for use in our pipeline as well as
the optimal method are shown in Additional file 7.

Clinical datasets
Prostate Cancer Cell Line (PCCL)
The PCCL dataset [43] has been leveraged in previous
studies as a positive control and a means for comparing
algorithm run time. This dataset is derived from a prostate
cancer cell line infected with the human papillomavirus
serotype 18. The RNA sequencing was performed using
an Illumina GA II sequencer and 26,958,682 reads (40
bases each) were publically available [SRA:SRR073726].

New World Titi Monkey Adenovirus Outbreak (TMAdv)
Sequencing reads from two New World titi monkeys
(Callicebus cupreus) infected with a highly divergent
adenovirus [44] make up the second dataset used to
evaluate Clinical PathoScope. The samples originated
from an outbreak of an unknown virus in a colony of titi
monkeys in California. Chen et al. obtained tissue sam-
ples from the lungs of two titi monkeys during necropsy
and were sequenced together using the Illumina GA IIx
for 73 cycles in both directions yielding 12,393,506 reads
(73 bases). Chen et al. identified the cause to be a new
highly divergent species of adenovirus that was subse-
quently assembled and so named Titi Monkey adenovirus
(TMAdv). We supplemented our host library with the
most closely related, fully sequenced simian species, Calli-
thrix jacchus [GenBank:PRJNA46205]. As a positive con-
trol, we included the TMAdv genome in our target library
and validated that Clinical PathoScope accurately distin-
guished the TMAdv from all other adenovirus genomes.

Tuberculosis in a Mummy
Sequencing reads from a 200 year old mummy infected
with tuberculosis were obtained from a previous study
[45] and used to evaluate Clinical PathoScope’s ability to
detect bacterial pathogens. The sample was collected
from lung tissue taken from the left side of the thorax of
a mummified body. Pulmonary tuberculosis was sus-
pected because of the cathectic state of the body and
was confirmed by PCR analyses. As further validation,
the sample was sequenced on the Illumina MiSeq instru-
ment for 300 cycles in both directions yielding 5,541,400
reads with an average length of 297 basepairs; the reads
were retrieved from Sequence Read Archive with acces-
sion number SRP018736. For analysis with Clinical
PathoScope, the reads were split into 12,261,862 reads of
approximately 100 bases in length.

16S Amplimer Sequencing (16S)
In addition to testing our approach on in silico and previ-
ously published clinical datasets, we validated our ap-
proach on data from our own clinical samples. Under GW
IRB-approved protocol #051140, unused deep endobron-
chial sputum samples acquired from three intubated sub-
jects were obtained after the samples had been used for
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standard microbiologic testing and culture as directed by
the medical team. A waiver of informed consent was used
since the samples were being used as part of the standard
of care for these subjects. Each subject was provided a
handout detailing the study and given them the option to
have their sputum samples excluded from the study. The
bacteriological staining of aspirate samples revealed the
presence of Gram-negative bacteria, and bacterial cul-
ture from aspirates identified abundant Pseudomonas
(patients F1 and G1) and Enterobacter (patient H1),
with opportunistic flora in all samples. All three pa-
tients were on an antibiotic treatment regimen prior to
the collection of samples. Patient F1 was treated with a
combination of aminoglycoside (gentamicin and tobra-
mycin) and polymyxin (colistin) antibiotics; patient G1
was on gentamicin/tobramycin regimen only, and pa-
tient H1 was treated with third generation cephalo-
sporin antibiotics (ceftazidime). In addition to clinical
samples, we collected the bacterial DNA from gram-
positive and gram-negative ATCC reference strains:
Staphylococcus aureus (ATCC No. 25923 - MSSA), En-
terococcus faecalis (ATCC No. 51299), Pseudomonas aeru-
ginosa (ATCC No. 27853), Escherichia coli (ATCC No.
25922). Total DNA from these samples was isolated by
centrifugation, and solubilization of the pellet using the
Sigma GeneElute kit combined with a lysis buffer by
mixing together the Gram + and Gram- buffers supple-
mented with lysozyme (2.115X10^6 units/mL), lysosta-
phin (200 units/mL), mutanolysin (5000 units/mL).
Nanodrop and Qubit measurement of concentrations
were used to quantify DNA. After DNA isolation, we
amplified the 16S ribosomal RNA (rRNA) gene using
the U1492R, Tm 49.44 (GGTTACCTTGTTACGACTT)
and B27F, Tm 41.67 (AGAGTTTGATCCTGGCTCAG)
universal primers using 800 ng of template. The ampli-
mers were ligated into SMRTbells and sequenced on a
Pacific Biosystems RS. The sequencing yielded an aver-
age of 4,127 reads per sample, averaging 1,178 bases
long. For analysis with Clinical PathoScope, the PacBio
reads from each sample were split into 100 base seg-
ments that were then treated as individual reads, gener-
ating on average 39,183 reads of 100 bases per sample.
To accommodate the high identity of 16S RNA se-
quences from different bacterial species and strains, the
alignment parameters for this dataset were tightened
compared to the viral samples, allowing 1 mismatch per
100 bases during alignment, and allowing for multiple
‘best’ hits per read (e.g. Bowtie2 ‘k’ set at 1,000). These
data were submitted to the NCBI Sequence Read Archive
(SRA) database under accession number SRP028704.

16S phylogenetic inference
We took all genomes from GenBank’s RefSeq database be-
longing to Pseudomonas, Enterobacter, and Acinetobacter

genera (56 taxa) and generated a BLAST database, which
we queried with a full-length 16S rRNA gene sequence
[46]. We selected one copy per species and aligned the
resulting dataset using a secondary structure aware algo-
rithm (Q-INS-i) as implemented in MAFFT [47]. We ran
10 independent Maximum Likelihood searches in RAxML
[48] (1000 bootstraps) assuming a GTR nucleotide substi-
tution model with gamma distributed rate heterogeneity.
Additionally, we obtained diagnostic characters defining
particular species using the phylogeny-aware algorithm
implemented in CAOS [49].

Clinical dataset preprocessing
The four clinical datasets were used to evaluate our Clin-
ical PathoScope pipeline and to compare our method
against previously published algorithms. A summary of
these datasets is shown in Additional file 8. Extensive qual-
ity control was performed uniformly on each of the data-
sets to remove low quality and artificial sequences using
PrinSeq [50] (−derep 123; −lc_method dust; −lc_threshold
40) and Cutadapt [51], respectively. For each read, bases
having a Phred quality score less than 20 were trimmed
from the 3′ end and reads with a median quality score
below 20 were removed. Low complexity and redundant
reads were determined using PrinSeq and removed along
with adapter and primer sequences [see Additional file 9
for a complete list of adapter and primer sequences]. A
minimum read length of 25 base pairs was strictly enforced
for trimmed reads to facilitate accurate sequence align-
ment. Reads that failed to meet the length requirement
were not considered for further analysis.

Comparison to published algorithms
Clinical PathoScope was evaluated alongside two exist-
ing pathogen identification algorithms, RINS [19] and
READSCAN [18] to emphasize the major differences in
performance between assembly-based approaches and
our implementation of computational subtraction with
varying read length and ambiguous read reassignment.
All three methods were compared based on their ability
to rapidly identify the pathogens present in the clinical
datasets described above. We also considered several
published metagenomic-like pipelines such as CloVR-
Metagenomics [52], IMSA [53], LMAT [54], and metA-
MOS [55] in the context of pathogen identification.
These methods were of limited use in this context be-
cause of their significantly longer run times (see Results).
Additionally, we tested MGmapper [56], KmerFinder
[56,57], and Tapir [58]. These approaches are webserver-
based approaches, which in some cases have stand-alone
downloadable software, however the stand-alone ver-
sions produced errors at implementation. Additionally,
these methods were not designed for metagenomic sam-
ples and therefore have no mechanism for dealing with
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host sequences, and as a result these methods were not
considered further in this study.

Results and discussion
Comparison of alignment algorithms
The internal parameters for each alignment algorithm
were evaluated and tuned to maximize alignment sen-
sitivity and specificity as well as to minimize run time
by mapping reads from our first set of simulated sam-
ples to the reference libraries [see Additional file 5 and
Additional file 6]. The average alignment results and
confidence intervals of each algorithm using optimized
parameters and read lengths are shown in Table 1.
When aligning reads to the human library, SOAP2 was
on average 30.5% faster than Bowtie2; however Bow-
tie2 had a 15.0% higher average sensitivity at 90.2%
and a more consistent run time. For alignments to the
viral library, PBLAT had the highest average sensitivity
of 99.8%. Bowtie2 also achieved a high average sensi-
tivity of 98.1% with an 80% reduction in average run-
time compared with PBLAT. For alignments to the
bacterial library, PBLAT had the highest average sensi-
tivity of 98.9%; however, it took almost 20 times longer
than Bowtie2, which had an average sensitivity of
79.8%. Overall, Bowtie2 offered the best combination
of sensitivity, specificity, and speed when aligning
reads against the human, bacterial, and viral libraries.

Impacts of read length
We evaluated the effect of varying the length of each
read used during alignment to further maximize the sen-
sitivity, specificity, and minimize run time. Temporary
read splitting and trimming allows clinical samples from
any sequencing technology to be analyzed without com-
promising the speed and accuracy of the short read
aligner or losing the alignment specificity of longer
reads. For the five simulated samples, varying read

length had a larger impact on runtime and sensitivity
than adjusting internal parameters. Using Bowtie2 as our
primary aligner, 10 million 50 base reads were aligned
against the human library in an average 28 minutes, while
aligning 100 base reads took on average 40 minutes. De-
pending on the reference library used, increasing read
length may or may not increase sensitivity. Bowtie2
aligned 50 base reads to the human library with an average
sensitivity of 90% and 100 base reads with a decreased
average sensitivity of 75%. This trend can be explained by
the splice junctions found in human transcriptome se-
quences. With fewer bases, the odds of a read spanning a
splice junction are smaller and the read will be more likely
to align. Conversely, when aligning reads against the bac-
terial and viral libraries, the average sensitivity is 10-20%
higher using 100 base reads compared to 50 base reads
[see Additional file 6 for complete results]. To evaluate if
longer reads continue to increase sensitivity, a subset of
150 base simulated bacterial reads were tested. Results in-
dicate that splitting the 150 base reads into 100 base and
50 base segments increased sensitivity by approximately 4
percent compared to leaving the reads at the full length of
150 bases. Thus, upon initiation, Clinical PathoScope
splits all long reads into fragments with a maximum
length of 100 bases.

Library alignment and filtering order
Various filtration methods were evaluated in an effort to
minimize computation burden and maximize accuracy.
Five subtraction frameworks were evaluated: A) Naïve
Approach, B) Target Centric, C) Target Centric + Reassign-
ment, D) Host Centric + Reassignment, and E) Host
Centric [Additional file 7]. In the target centric approaches,
reads are first aligned against the target library followed by
the host and non-target libraries. Conversely, in the host
centric approaches, reads are first aligned against the host
and non-target libraries and then against the target library.

Table 1 Simulation study alignment statistics using optimal model parameters

Human Virus Bacteria

Time (m) Sensitivity Time (m) Sensitivity Time (m) Sensitivity

Specificity Specificity Specificity

Bowtie2 8.2 ± 0.0 90.2 ± 0.0 3.3 ± 0.6 98 .1 ± 0.6 15.8 ± 1.6 79.8 ± 0.1

100.0 ± 0.0 99.8 ± 0.2 100.0 ± 0.0

BWA 22.8 ± 3.2 89.9 ± 0.0 6.5 ± 1.4 76.8 ± 5.4 - -

100.0 ± 0.0 99.8 ± 0.2 -

SOAP2 5.7 ± 1.6 76.7 ± 0.0 3.9 ± 0.8 50.3 ± 5.4 23.3 ± 2.2 27.7 ± 0.0

100.0 ± 0.0 99.9 ± 0.1 100 ± 0.0

PBLAT 61.2 ± 6.8 78.2 ± 0.0 16.7 ± 1.3 99.8 ± 0.1 306.3 ± 23.3 98.9 ± 0.0

100.0 ± 0.0 99.6 ± 0.2 52.7 ± 0.0

Each aligner was used to align the first set of five simulated sequencing samples (10 million 100 base-pair reads) against each of the three genome libraries using
optimal parameters. The average run time, sensitivity, and specificity as well as confidence intervals for each alignment are reported. BWA failed to run to completion
with the bacterial library.
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The naïve approach, or only aligning to the target library,
took the least amount of time, but resulted in the highest
number of false positives. While both the target centric
and host centric filtration approaches yielded similar re-
sults in terms of accuracy, the target centric approaches re-
quired ten fewer minutes (~70% less total time) to run to
completion than the host centric approaches. The target
centric approaches were more efficient because a greater
number of sequences were removed by initially mapping
reads to the target library than to the host library, thus re-
ducing computational burden for subsequent alignments.
To determine the impact of the read reassignment algo-
rithm, we compared the sensitivity of both target centric
approaches by analyzing our second set of simulated sam-
ples. With viral pathogens as the target library, the target
centric approach with read reassignment achieved an aver-
age sensitivity of 97.8% for species and strain level identifi-
cations. Without the reassignment algorithm, the target
centric approach achieved an average sensitivity of 90.3%
and 78.1% at the species and strain level, respectively. Con-
currently, with bacterial pathogens as the target library, the
target centric method with reassignment achieved an aver-
age sensitivity of 77.6% and 72.8% at the species and strain
levels, respectively, compared with 52.8% and 41.7% for
species and strain specific identifications without read re-
assignment. These dramatic improvements in sensitivity
between methods with and without read reassignment
demonstrate the necessity of this algorithm within the
Clinical PathoScope pipeline. The performance difference
between viral and bacterial identification can be directly at-
tributed to the mixture of bacterial pathogens present in
these simulated samples. When two very closely related
strains of the same species are present in a given sample,
Clinical PathoScope will tend to reassign reads which
aligned to both strains to the strain with more uniquely
identifying sequences. Details regarding identification ac-
curacy of Clinical PathoScope with respect to each individ-
ual strain can be found in Additional file 3.

Optimal Clinical PathoScope pipeline
The optimized Clinical PathoScope pipeline uses three
reference genome libraries, four alignment modules and
the original PathoScope read reassignment algorithm to
identify pathogens in a given sample (Figure 1). First, all
reads from a sample are mapped against the reference
genomes of the organisms of interest (target library,
e.g. viruses) using up to the first 100 bases of each read.
This initial alignment results in the removal of the
greatest number of sequences by eliminating reads with-
out strong sequence similarity to the target genomes.
Second, reads that aligned to the target library are
aligned against the reference library of the host species
(host library) using the first 50 bases of each read. This
step allows for any residual host contamination to be

identified and removed from the set of candidate reads
originating from the target genomes. Third, reads which
did not align to the host library are aligned against
additional reference genomes (non-target library) known
to be negative targets of the analysis and which may
overlap with the candidate read set. Similar to step one,
reads are aligned using the first 100 bases of each read
to maintain high specificity. Reads which did not align
to the non-target library are realigned to the target
library allowing up to k alignments (e.g., we recommend
k = 10 for viral detection) per read and subsequently
passed to the read reassignment module in which reads
with ambiguous alignments are reassigned to their
putative correct genome of origin. In summary, any
sequencing read contributing to the identification of a
pathogenic genome must 1) align to the target genome
library, 2) remain unaligned to the host genome library,
3) remain unaligned to the non-target library, and 4)
retain its alignment to the target library. Finally, the
pipeline produces a report detailing the number and
proportion of reads originating from each genome iden-
tified in a given sample.

Software implementation and distribution
The Clinical PathoScope pipeline has been implemented
in open-source Python, and is freely available for down-
load at: http://sourceforge.net/projects/pathoscope/. The
software requires the user to supply a fastq read file
(after conducting quality control), any number of target,
host, and non-target library Bowtie2 indices. Furthermore,
the user has the option of changing the pipeline alignment
parameters using inputs in the configuration file. For con-
venience, our viral, bacterial, and human alignment indices
are freely available for download on the software distribu-
tion website. Clinical PathoScope will output two align-
ment files in SAM format, one directly from the Bowtie2
alignment, and another after read reassignment. Finally,
the pipeline will output a tab-delimited summary report
containing the genomes found in the sample as well as
read numbers and proportions assigned to each genome.

Evaluation of clinical PathoScope on clinical data
Four clinical datasets were utilized to evaluate the effi-
cacy of Clinical PathoScope across a variety of scenarios
[see Additional file 8 for summary of datasets]. In
addition, Clinical PathoScope was evaluated side by side
with two previously published pathogen identification
methods, RINS and READSCAN, on the basis of com-
putational speed and accuracy at identifying pathogens
in clinical sequencing samples.

Prostate Cancer Cell Line (PCCL)
Clinical PathoScope was able to rapidly decode the viral
composition of this dataset; identifying the Human
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papillomavirus type 18 in fewer than 10 minutes. RINS
and READSCAN both produced similar results; how-
ever, they required approximately four times the compu-
tational time to identify the pathogen, with run times of
89 minutes and 53 minutes, respectively (Table 2).

New World Titi Monkey Adenovirus Outbreak (TMAdv)
We examined Clinical PathoScope’s performance in two
clinical scenarios using the TMAdv dataset. First, to
evaluate our pipeline in cases where the exact strain is
missing from the target library, we excluded the TMAdv
strain from the target library. In this scenario, Clinical
PathoScope assigned reads to several adenovirus species
(Figure 2A). According to Chen et al., the Simian adeno-
virus 3, which was the top ranked virus in the Clinical
PathoScope result, is the closest phylogenetic relative to
the TMAdv, with approximately 56% sequence similarity.
Despite its highly divergent nature, Clinical PathoScope
was able to successfully identify the closest phylogenetic
neighbor of this novel species. Next, as a positive con-
trol, we included the TMAdv genome in our target li-
brary and validated that Clinical PathoScope accurately
distinguished the TMAdv from all other adenovirus ge-
nomes (Figure 2B), identifying 12,568 reads from TMAdv.
In their original analysis, Chen et al. used BLASTn [46] to
identify 16,524 reads from TMAdv. This discrepancy can
be explained by the fact that BLASTn is a much more
sensitive algorithm than Bowtie2. This moderate increase
in sensitivity, however, results in a dramatic increase in
run time, with BLASTn requiring ten times longer to
complete the alignment than Bowtie2 when TMAdv is the
only sequence in the database. Therefore, with rapid
pathogen detection as the goal, a Bowtie2-based approach

clearly provides a reasonable trade-off between speed and
sensitivity, whereas if genome assembly is the goal, a
BLAST-based approach might be preferable (at the cost of
computational efficiency). Despite aligning approximately
4,000 fewer reads than the analysis in the original publica-
tion, we were still able to obtain 22.0x coverage of the
TMAdv genome. While it is clear that Clinical Patho-
Scope aligned substantially more reads with the TMAdv
genome in the target library than in its absence, we were
still capable of generating a list of candidate relatives with
read counts proportional to their sequence similarity with
the TMAdv. Furthermore, Clinical PathoScope completed
analysis of this dataset in less than 5 minutes (Table 2).
With the TMAdv genome in the reference library,

both RINS and READSCAN were able to accurately
identify the correct viral genome in the sample. When
the TMAdv was removed from the library, RINS gener-
ated a single contiguous sequence consisting of only 156
reads which mapped to 6 different adenovirus genomes,
none of which included the nearest phylogenetic neigh-
bor. This shows that, while assembly may be possible in
a given sample, the ambiguous mapping of a contig to

Figure 1 Clinical PathoScope pipeline. A computational subtraction method using varying sequence read lengths and ambiguous read
reassignment. Unassembled sequencing reads are aligned against a target library containing reference sequences of the intended target(s) of
identification (e.g. viruses). Reads aligned to the target library are then aligned to a host library. Any reads aligned to the host sequences are
removed from further analysis. Next, reads are aligned against a library of known non-target sequences. Unaligned reads are then mapped back
to the target library, allowing up to k alignments per read (e.g. k = 10). These alignments are subsequently passed to an expectation maximization
algorithm in which ambiguous alignments are reassigned to their most probable genome of origin. Upon reassignment, a report detailing the
pathogens identified and their relative abundances is produced.

Table 2 Run time comparisons of Clinical PathoScope and
existing technologies

Average Run Time (minutes)

Dataset Target Clinical PathoScope RINS READSCAN

Simulation Virus 4.5 84.1 193.58

Simulation Bacteria 13.1 1108.2

PCCL Virus 6.0 89.1 52.8

TMAdv Virus 4.4 144.0 78.6

Mummy Bacteria 25.0 1099 882
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multiple genomes provides little information pertaining
to the true subspecies of origin. Additionally, RINS re-
quired 144 minutes to complete its analysis of this data-
set. READSCAN assembled several contigs of varying
lengths and read counts from 16–60 reads per contig.
However, the adenovirus strains identified and ranked by
READSCAN based on their relative genome abundance
score [18] were inconsistent with phylogenetic relation-
ships found by Clinical PathoScope and the original
study [44]. Finally, READSCAN required approximately
80 minutes to analyze this dataset.

Tuberculosis in a Mummy
To demonstrate the performance of Clinical PathoScope
with respect to bacterial pathogen identification, we ana-
lyzed a sample isolated from a mummy infected with tu-
berculosis. Using assembled contigs and comparative
genomics, Chan et al. found evidence the deceased was
infected with two Mycobacterium tuberculosis genotypes.
Using patterns of deletions and SNPs, they concluded
that both strains most closely resemble strain 7199/99,
but also share similarities with strain H37Rv. When
strain 7199/99 was included in the target database, Clin-
ical PathoScope associates 32% of the reads with strain
7199/99 and 25% of reads with H37Rv. The majority of
the remaining reads were split between additional M. tu-
berculosis strains and Nocardia species. Chan et al. also
identified Nocardia species using their assembly ap-
proach. Clinical PathoScope successfully identified the
most closely related strains and furthermore, only re-
quired 25 minutes to complete the analysis. While these

results are in agreement with the author’s nearest-
neighbor findings, we note that the number of novel M.
tuberculosis strains in the sample (two unique strains ac-
cording to Chan et al.) cannot be inferred from the Clin-
ical PathoScope output alone. To successfully conclude
the presence of two unique, novel strains in the sample,
a more complex, assembly based approach is required.
Neither RINS nor READSCAN performed well on this
dataset, requiring 1099.0 and 882.25 minutes, respect-
ively, to complete the analysis, likely due to the large
average read size of 297 bases and the complexity of the
bacterial database. RINS assembled 20,483 unique con-
tigs of varying length and reported 1,044,193 unique
alignments of these contigs to 2,293 bacterial genomes.
While vast, these results are uninformative as to the spe-
cific strains present within the clinical sample. Several
contigs were assigned to various M. tuberculosis strains
in the RINS report; however, there was a tremendous
lack of specificity with regard to the specific strains
present in the sample. With thousands of other bacterial
genomes identified and no metric for quantifying se-
quence abundance, the user is forced to interpret the re-
sults of thousands of contigs and millions of potential
alignments, many of which are redundant or uninforma-
tive. READSCAN required less time to complete its ana-
lysis of the mummy dataset than RINS; however it also
failed to generate a report detailing any of the identified
pathogens. In their original publication, the authors
demonstrate READSCAN primarily in the context of viral
pathogen identification and note its performance im-
provements over previous methods. As can be observed

Titi Monkey Adv ECC-2011
HQ913600.1

Simian Adv 3 (56.3%)
NC_006144.1

Murine Adv 2
NC_014899.1

Porcine Adv A
NC_005869.1

Human Adv E (51.9%)
NC_003266.2

Simian Adv 1
NC_006879.1

Simian Adv 25
AC_000011.1

Human Adv D  (55.1%)
NC_010956.1

Simian Adv 49
NC_015225.1

5
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10

15

110

88

12568

86
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Figure 2 Alignment variations with and without TMAdv in the target library. A) Without the TMAdv present in the target library, Clinical
PathoScope assigned reads to several adenovirus genomes. The identified genomes are displayed according to the proportion of total reads
aligned to all adenovirus genomes. The pairwise nucleotide identities of several adenovirus subtypes to the TMAdv genome according to Chen
et al. are given in parentheses. The Simian adenovirus 3 had the most reads aligned of all adenoviral genomes, which is consistent with its
sequence similarity to the TMAdv. Additionally, the Human adenovirus D aligned the most reads of all human adenoviruses, which is consistent
with the analysis of Chen et al. B) Inclusion of the Titi Monkey Adenovirus (TMAdv) in the target library resulted in the assignment of 12,568 reads
to the TMAdv reference genome.
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from its run time on the mummy dataset, however,
READSCAN has trouble scaling to larger bacterial data-
sets with many closely related strains of the same species.

Bacterial species identification from 16S Amplimer
Sequencing (16S)
Clinical PathoScope was also tested on eight 16S amplimer
samples (Accession: SRP028704), five originating from
ATCC bacterial species, and three from patient tissue ex-
tracted from intensive care patients with suspicion of bac-
terial infections. As shown in Table 3, Clinical PathoScope
was able to successfully identify the unique bacterial species
in each of the first four ATCC samples with high accuracy.
Furthermore, Clinical PathoScope was able to accurately
identify the correct mixture of ATCC species in the fifth
sample, assigning 30.4%, 30.2%, 21.2%, and 15.9% of the
reads to Escherichia coli, Enterococcus faecalis, Pseudo-
monas aeruginosa, and Staphylococcus aureus, respectively.
For the three patient samples, we observed that the

first sample (F1) contained a mixture of Acinetobacter

baumannii (57.6%) and Pseudomonas aeruginosa (40.4%),
and that the other two samples (G1 and H1) were domi-
nated by Pseudomonas aeruginosa (94.6%) and Enterobac-
ter aerogenes (84.2%), respectively. To validate these
results, we constructed a phylogenetic tree of 16S genes
from all genomes in the reference library that reside
within the three genera identified in the clinical samples
[see Additional file 10]. We then visually inspected the
read coverage pileup plots of 16S genes unique between
identified species and their positions relative to phylogen-
etic neighbors [see Additional file 11]. We observed that
read coverage is uniform across the genomes identified by
Clinical PathoScope in each sample, resulting from the
fact that they share 100% sequence similarity of their 16S
genes. In contrast, we noticed large coverage gaps in the
nearest phylogenetic neighbors, indicating that there were
sequence variants in these regions that prohibited reads
from aligning to these specific locations. This analysis fur-
ther demonstrates the highly specific and accurate frame-
work employed by Clinical PathoScope and its utility not

Table 3 Clinical PathoScope performance on the 16S amplimer dataset

Clinical PathoScope Results

Accession Sample type Species identified Reads assigned (%)

SRR949994 S. aureus ATCC No. 25923 MSSA S. aureus 3,479 (98.0)

P. aeruginosa 36 (1.0)

SRR949995 E. faecalis ATCC No. 51299 E. faecalis 2,351 (89.8)

S. aureus 139 (5.3)

E. hirae 44 (1.7)

P. aeruginosa 42 (1.6)

SRR949996 P. aeruginosa ATCC No. 27853 P. aeruginosa 5,661(82.3)

E. coli 1,021 (14.9)

SRR949997 E. coli ATCC No. 25922 E. coli 4,169 (94.7)

S. enterica 66 (1.6)

SRR949998 Mixture of E. coli, E. faecalis, P. aeruginosa, S. aureus (above) E. coli 14,280 (31.9)

E. faecalis 14,306 (31.9)

P. aeruginosa 8,771 (19.6)

S. aureus 6,594 (14.8)

SRR950015 Clinical Sample (F1) A. baumannii 4,889 (59.4)

P. aeruginosa 3,177 (38.7)

SRR950024 Clinical Sample (G1) P. aeruginosa 1,131 (94.5)

E. coli 45 (3.8)

SRR950025 Clinical Sample (H1) E. aerogenes 587 (85.9)

P. aeruginosa 18 (2.6)

Erwinia sp. Ejp617 19 (2.8)

E. coli 18 (2.6)

S. enterica 9 (1.3)

E. asburiae 10 (1.5)

S. intermedius 8 (1.2)
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only for strain-specific pathogen identifications, but also
for 16S bacterial classification.

Comparison to metagenomic pipelines
Clinical PathoScope has been designed to facilitate a
rapid and streamlined approach to identify strain-
specific pathogens in noisy clinical sequencing samples.
We compared our method directly with two previously
published algorithms, RINS and READSCAN, which
were designed specifically for pathogen identification in
clinical samples. Additional methods, such as PathSeq
[17] and IMSA [53], were also considered. These
methods rely on several BLAT and BLAST alignments in
order to filter sequencing reads which can take several
hours to days to complete depending on the number of
reads in a given sample. To evaluate these types of ap-
proaches, we implemented a similar BLAST-based work-
flow and applied this workflow to our second set of
simulated samples with the bacterial library as the target.
This approach resulted in a substantial decrease in per-
formance with only 48.3% and 34.8% sensitivity for spe-
cies and strain-specific identifications, respectively. This
BLAST-based approach required 55 hours and 26 mi-
nutes, which is 300 times slower than Clinical Patho-
Scope. Therefore, these algorithms are not practical
methods for rapid clinical diagnostics.
We further expanded our comparisons to metage-

nomic pipelines that were not specifically designed for
the identification of pathogens in clinical samples but
whose methods or modules may be useful for the task.
We first considered the CloVR-Metagenomics pipeline
which clusters raw sequencing reads to reduce redun-
dancy followed by a simultaneous BLASTX and BLASTN
analysis against RefSeq and COG in order to annotate
each sequencing read. CLoVR-Metagenomics does not ad-
dress the issue of host contamination and thus wastes
computational time clustering and annotating sequences
originating from the host which can account for >90% of
the clinical sample. While very sensitive, BLASTN is no-
toriously slow and does not scale well to large metage-
nomic samples [54], making CLoVR-Metagenomics
impractical for rapid strain identification. Furthermore,
the redundancy reduction procedures employed by
CLoVR-Metagenomics collapse sequences with 99% nu-
cleotide similarity which could potentially remove reads
that distinguish two closely related strains of the same
species.
We also considered assembly-based metAMOS [55]

and phylogeny-based LMAT [54]. metAMOS offers a
rich suite of assembly algorithms and pathogen annota-
tion methods, however it does not incorporate any
methods to remove host or contaminating sequences. As
a result, the assembly of sequencing reads from a host-
dominated clinical sample would require an attempt to

assemble the entire host genome. This will result in a
substantial and unnecessary increase in computational
time and these contaminating reads could result in high
instances of false positive mappings. LMAT, a software
package designed for taxonomy classification, claims ac-
curacy only to the species level and does not report gen-
ome abundance information and thus cannot replicate
the detailed pathogen report produced by Clinical
PathoScope.

Conclusions
Sequence-based diagnostic tools have the potential to
revolutionize the treatment of patients in the clinic, par-
ticularly those suffering from viral and bacterial infec-
tions. As the run times and error rates of modern
sequencing technologies rapidly decline, it is essential
that software be developed to analyze these data in a
manner that is both fast and highly sensitive in order to
provide physicians with the most accurate information
possible. We have implemented a novel pipeline for
pathogen identification that overcomes many of the
challenges faced by current sequence-based methods in-
cluding clinically appropriate run time and subspecies
specific assignment of sequencing reads. We have also
demonstrated our method’s ability to identify multiple
pathogens in a single clinical sample or the nearest
phylogenetic neighbor of highly mutated or divergent
species. Furthermore, Clinical PathoScope remained ro-
bust when analyzing datasets with lower than 1x cover-
age of the target genomes. It should be noted, however,
that as coverage drops below 1x, the probability of se-
quencing a strain-specific segment of the target genome
decreases. If these uniquely identifying reads are not se-
quenced and thus not present in the sample, Clinical
PathoScope will tend to report the strain with the most
aligned reads. Given that strain-specific reads do exist
within a given sample, we expect the lower limit of
coverage required to make a strain-specific identification
to be comparable to our previously published results
[30] in which we demonstrated the efficacy of our read
reassignment algorithm with as low at 20% coverage of
the genome.
The reference genome libraries used in this analysis

contain all sequenced and assembled viral and bacterial
genomes from NCBI’s RefSeq database. By avoiding gen-
ome assembly in favor of more rapid computation, Clin-
ical PathoScope is limited in that it can only identify
pathogens that are present in these reference libraries.
While the libraries used in this study characterize the
majority of known pathogens, they do not contain draft
genomes. To broaden and extend the application of
Clinical PathoScope in future studies, we allow the user
to exchange, modify, or extend these libraries as more
data becomes available.
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By comparison with existing methods, we have dem-
onstrated that our method is the fastest strain-level
pathogen identification algorithm currently available in
the literature. As the number of sequenced pathogens
grows, the breadth of the reference libraries used with
Clinical PathoScope will increase, thus expanding the
search space required to assign sequencing reads to a
specific genome of origin. While this increase in search
space will result in a linear increase in run time, we as-
sert that our method will not lose its computational ad-
vantage over existing methods.
In addition to faster run times and more accurate results,

Clinical PathoScope offers a user-friendly implementation.
With only two dependencies, Bowtie2 and the PathoScope
reassignment algorithm, Clinical PathoScope can easily be
installed and run on a standard desktop computer, facilitat-
ing a simplified workflow for the accurate identification of
pathogens in clinical sequencing samples. While designed
for use by computational biologists and biologists, the re-
ports produced by Clinical PathoScope may prove useful
to physicians as they provide a complete picture of the mi-
crobial community of a given clinical sample which may
influence clinical diagnoses and treatment options.

Availability and requirements
Project name: Clinical PathoScope.
Project home page: http://sourceforge.net/projects/patho-

scope/.
Operating system(s): Platform independent.
Programming language: Python 2.7 or higher.
Other requirements: Bowtie 2.0 or higher.
License: GNU GPL.
Any restrictions to use by non-academics: License needed.

Availability of supporting data
Genome Reference Libraries http://www.bu.edu/jlab/wp-
assets/databases.tar.gz.
Simulated read datasets: http://sourceforge.net/projects/

pathoscope/files/simulated_sample.fastq.gz/download.
Prostate Cancer Cell Line (PCCL): SRR073726; http://

www.ncbi.nlm.nih.gov/sra/?term=SRR073726.
New World Titi Monkey Adenovirus Outbreak (TMAdv):

SRA031285; http://www.ncbi.nlm.nih.gov/sra/?term=SRA
031285.
Tuberculosis in a Mummy: SRP018736; http://www.

ncbi.nlm.nih.gov/sra/?term=SRP018736.
16S Bacterial Amplimer Sequencing (16S): SRP028704;

http://www.ncbi.nlm.nih.gov/sra/?term=SRP028704.

Additional files

Additional file 1: Workflow employed to develop the Clinical
PathoScope pipeline. Three reference genome libraries were
downloaded from NCBI. Four alignment algorithms were tested and

evaluated on five simulated clinical sequencing samples. Each aligner was
parameter tuned and optimized and Bowtie2 was selected as the choice
aligner for the Clinical PathoScope pipeline. The order with which reads are
aligned to the reference libraries was determined and the performance of
Clinical PathoScope was evaluated using four clinical datasets. Furthermore,
we compared our results against those produced by existing technologies.

Additional file 2: Viral genomes with human ribosomal RNA
contamination. GenBank accession numbers and names of viral
genomes showing sequence similarity to human rRNA sequences.

Additional file 3: Simulated data summary & code. Genome
accession numbers, read counts, mutation rates, and run commands
used to generate the simulated sequencing samples.

Additional file 4: Alignment optimization variables and methods.
The internal parameters for each of the four aligners were varied and
tuned. Additionally, the length of each read aligned was varied. For each
unique aligner-parameter-read length configuration, the sensitivity,
specificity, and run time when aligning the simulated samples against
the reference genome libraries was calculated.

Additional file 5: Commands and versions of alignment algorithms
evaluated.

Additional file 6: Results of all alignment runs.

Additional file 7: Subtraction and filtration optimization methods.
Various filtration methods were tested in an effort to minimize computational
burden and maximize accuracy. Approaches tested include A) Naïve
Approach, B) Target Centric, C) Target Centric + Reassignment, D) Host
Centric + Reassignment, and E) Host Centric. Post filtration, all reads are
aligned against the target genome library. The resulting read alignments are
reassigned to the correct genome of origin using the PathoScope
Expectation Maximization algorithm.

Additional file 8: Overview of clinical datasets used to evaluate
Clinical PathoScope.

Additional file 9: List of candidate primers and adapters used for
quality control filtering.

Additional file 10: Phylogeny of 16S genes for genera found in
clinical samples. We constructed a phylogenetic tree of 16S genes from
all species in the reference library from the genera identified in the
patient samples from the clinic. This tree was used to identify the nearest
16 s neighbor of the Clinical PathoScope diagnosis, and to check initial
mapping read coverage of 16 s genes.

Additional file 11: Read coverage for 16S genes and nearest
phylogenetic neighbors. A) F1, B) G1, and C) H1 16S clinical samples
(top frame: overall coverage, bottom frame: ‘pileup’ plot for a selected sets
of the reads). Coverage for the ‘nearest’ phylogenetic neighbor contains
large coverage gaps and some of the locations have mismatching bases for
all reads. Combined these figures indicate that Clinical PathoScope has
correctly identified the correct species in these clinical samples.
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