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Abstract 

The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is 

not well understood.  We utilized RNA expression profiling of extraocular muscle 

(EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental 

autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially 

to injury produced by EAMG.  EAMG was induced in female Lewis rats by 

immunization with acetylcholine receptor purified from the electric organ of the Torpedo.  

Six weeks later after rats had developed weakness and serum antibodies directed against 

the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, 

and EOM.  Profiling results were validated by qPCR.  Across the three muscles between 

the experiment and control groups, three hundred and fifty-nine probes (1.16%) with 

greater than 2 fold changes in expression in 7 of 9 series pairwise comparisons from 

31,090 probes were identified with approximately two-thirds being increased. The three 

muscles shared 16 genes with increased expression and 6 reduced expression.  Functional 

annotation demonstrated that these common expression changes fell predominantly into 

categories of metabolism, stress response, and signaling.  Evaluation of specific gene 

function indicated that EAMG led to a change to oxidative metabolism. Genes related to 

muscle regeneration and suppression of immune response were activated.  Evidence of a 

differential immune response among muscles was not evident.  Each muscle had a 

distinct RNA profile but with commonality in gene categories expressed that are focused 

on muscle repair, moderation of inflammation, and oxidative metabolism.   
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Introduction 

Myasthenia gravis (MG) is caused by antibodies, primarily directed at skeletal 

muscle nicotinic acetylcholine receptor (AChR), which lead to a reduction of AChR 

number and damage of the muscle endplate, producing a failure of neuromuscular 

transmission that results in weakness.[1]  The pathophysiology would be expected to 

compromise muscles to a similar extent, but clinical investigation for over a hundred 

years have demonstrated a preferential involvement of certain muscles.  Explanations for 

the differential targeting may lie in subtle aspects of the antibody-antigen engagement in 

vivo but are more likely to entail variations in the properties of the targeted muscles. 

The differential involvement of skeletal muscles by neuromuscular disorders, 

including MG, is poorly understood but likely is a function of disease specific 

pathophysiology and properties of the individual muscles.  In particular, differences in 

functional requirements of a muscle impact the gene expression pattern. In its role in eye 

movement extraocular muscle (EOM) is constantly, and this is reflected in its 

transcriptional profile differing from jaw and leg muscle in expression of glycogenic and 

gluconeogenic genes.[2; 3] Further, lactate is a significant substrate for EOM, which is in 

stark contrast to other skeletal muscles that excess lactate produces fatigue.[4]  Similarly, 

as reflected in fiber-type distribution diaphragm also possess properties that support its 

high energy requirements compared to leg muscles.[5]  The consequences of 

neuromuscular disorders on whole body metabolism may then also be expected to 

differentially impact muscles. 

Extraocular muscle (EOM) are preferentially involved by MG and several non-

exclusive explanations have been proposed. A patient may develop dramatic double 
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vision with even minimal weakness of an EOM, but a similar level of weakness of 

another muscle would not produce clinically evident symptoms.  The extremely rapid 

firing rate of ocular motor neurons and the immature appearance of their neuromuscular 

junctions may place the EOM at particular risk for a neuromuscular transmission 

disorder. The RNA expression profiles of EOM, extensor digitorum longus (EDL), and 

diaphragm (DIA) muscle from rats with passively-transferred MG (PTMG) [6] produced 

by administration of acetylcholine receptor antibody supports a greater degree of injury to 

EOM,[7] which supports that EOM has unique immunological characteristics that places 

them at specific risk for MG.[8; 9; 10] 

EAMG induced in rodents by immunization with purified AChR mimics the 

human disease much better than administration of AChR antibodies.[11]  Within 6 weeks 

of a single immunization, rats generate AChR antibodies and then weakness, which 

improves with cholinesterase inhibition.  As with humans, infiltrates of inflammatory 

cells are not prominently observed in muscle,[12; 13] which is in contrast to PTMG.  In 

order to assess, variations in intrinsic response of muscles to EAMG, we used RNA 

expression profiling of diaphragm (DIA), extensor digitorum longus (EDL), and EOM to 

assess their response.   

 

Materials and Methods 

Ethics Statement for Animal Use 

Six to eight week old female Lewis rats weighing 120 -150 g (Harlan, 

Indianapolis, IN) were maintained in the Case Western Reserve University School of 

Medicine animal facility.  The animal facility follows IACUC, AAALAT, and AALAS 
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standards concerning appropriate housing, cage cleaning procedure, air purity, feed, 

temperature, humidity, light and dark cycle. Animals were housed in isolator cages in a 

pathogen-free environment, and rodent chow and water were provided ad libitum. A 

veterinarian is on staff and will be observing the health of the animals throughout the 

study. All animal studies were conducted according to protocol approved by the Case 

Western Reserve Institutional Animal Care and Use Committee Approval Number 

030185.  All efforts were made to minimize animal suffering.  Tissue was harvested after 

euthanasia by CO2 asphyxiation. 

Induction and Evaluation of EAMG 

Torpedo AChR was purified from the electric organ of Torpedo californica by 

affinity chromatography as previously described.[14]  Rats were immunized once at the 

base of the tail by subcutaneous injection of purified Torpedo AChR (40 µg/rat in 200 µl) 

emulsified in complete Freund’s adjuvant supplemented with additional nonviable 

Mycobacterium tuberculosis H37RA (0.5 mg/rat; Difco Laboratories, Detroit, MI). 

Control rats were immunized with the same volume of adjuvant without AChR.  Rats 

were monitored for evidence of weakness and their status scored based on a commonly 

used motor strength scale, as follows: 0 = can grip and lift lid of a cage, 1 = can grip but 

cannot lift the lid of a cage, 2 = unable to grip cage lid, 3 = unable to grip and has hind 

limb paralysis, 4 = moribund.  Weight was assessed initially on a bi-weekly basis and 

then every other day when weakness or weight loss became evident.   

Tissue Preparation 

After euthanasia, EOM rectus muscles, DIA, and EDL muscles were dissected 

from rats 6 weeks after initiation of the experiment.  Muscles were pooled from 4-5 rats 
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for each of three independent replicate groups. The study was then repeated twice to 

produce the 3 replicates for the array analysis.  This procedure served to limit inter-

animal and inter-experiment variability. Tissues were snap frozen in liquid nitrogen and 

stored at -80°C until use.  

Serum AChR Antibody Determination 

Blood was obtained at week 2 by tail vein puncture and after euthanasia from the 

heart at week 6.  Serum was isolated and AChR antibody determination made by ELISA.  

Ninety-six-well immune-plates (Corning; New York, NY) were saturated with 200 μl (10 

μg/ml AChR) in PBS buffer (0.1% Tween20 in PBS) per well and incubated overnight at 

4oC.  After washing twice with PBST buffer, the plates were incubated with 200 μl of 

blocking buffer (5% of bovine serum albumin in PBS) per well at 37oC for 0.5-1.5h. The 

plates were washed twice with PBST buffer and then incubated for 1 h at 37oC with 100 

μl of the diluted test serum (1:200). The plates were then washed twice with PBST, each 

well received 100 μl of peroxidase-labeled rabbit anti-rat IgG and incubated for 1 h at 

37oC. One hundred μl of substrate solution (0.05 M citrate, 0.1 M NaCl/Pi, 2,20-Azino-

bis(3-ethylbenzothiazoline-6-sulfonic acid), 0.03% H2O2} was incubated for 15 min at 

37oC. Color development was measured at 405 nm using a microplate reader. 

Immunohistochemistry   

For analysis of C9 deposition at neuromuscular junctions, cryosections of muscles 

were prepared. Sections were incubated with rabbit anti-ratC9 (gift of M. E. Medof) and 

then double-stained with FITC-labeled goat anti-rabbit Ab and Texas red–labeled αBTX 

(2 μg/ml; Molecular Probes Inc., Eugene, Oregon, USA) to identify neuromuscular 

junctions. Sections were examined with a Nikon Diaphot fluorescence microscope 
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(Nikon Instruments Inc., Melville, New York, USA) and analyzed using ImagePro 

software (Media Cybernetics, Silver Spring, Maryland, USA).  

Sample Preparation for Microarrays 

The muscle harvested from DIA, EDL and EOM of four rats pooled from four 

EAMG or control rats during RNA isolation forming three samples for subsequent array 

analysis.  Total RNA was extracted using TRIzol reagent (GibcoBRL, Rockville, MD).  

RNA pellets were cleaned by RNasey kits and re-suspended at 1 mg RNA/ml DEPC-

treated water and 5 μg was used in a reverse transcription reaction (SuperScript II; Life 

Technologies, Rockville, MD) to generate first strand cDNA.  Double strand cDNA was 

synthesized and used in an in vitro transcription (IVT) reaction to generate biotinylated 

cRNA.  Fragmented cRNA (15 μg) was used in a 300 μl hybridization cocktail containing 

herring sperm DNA and BSA as carrier molecules, spiked IVT controls, and buffering 

agents.  A 200 μl aliquot of this cocktail was used for hybridization to Affymetrix rat 

REA230 (Santa Clara, CA) microarrays for 16 hrs at 45oC.  The manufacturer’s standard 

post-hybridization wash, double-stain, and scanning protocols used an Affymetrix 

GeneChip Fluidics Station 400 and a Hewlett Packard Gene Array scanner. 

Microarray data analysis   

Raw data from microarray scans were analyzed with Affymetrix GCOS 2.0.  

GCOS evaluates sets of perfect match (PM) and mismatch (MM) probe sequences to 

obtain both hybridization signal values and present/absent calls for each transcript. 

Microarrays were scaled to the same target intensity and pairwise comparisons were 

made between experimental and control samples. Transcripts defined as differentially 

regulated met the criteria of: (a) consistent increase/decrease call across 7 out of 9 
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replicate comparisons, based upon Wilcoxon’s signed rank test (algorithm assesses probe 

pair saturation, calculates a p value and determines increase, decrease, or no change 

calls).  Any transcripts with expression intensity below 400 (5 time of background level) across 

all the samples were also excluded since distortion of fold difference values results when 

expression levels are low and may be within the level of background noise.  Data were 

visualized as a hierarchical cluster analysis generated (Genespring software, version 7.2; 

Silicon Genetics, Redwood city, CA). Annotation was done according to Affymetrix 

NetAffyx Gene Ontology database.  Data for the 18 microarray experiments used in this 

report can be found in the National Center for Biotechnology Information (NCBI) Gene 

Expression Omnibus (GEO), series accession number GSE11465. 

Quantitative real-time PCR (qPCR) 

Select transcripts were reanalyzed by qPCR, using the same samples as in the 

microarray studies.  Transcript-specific primers (Supplemental Table 1) were designed 

using Primer Express 2.0 software (Applied Biosystems, Inc. (ABI), Foster City, CA) and 

specificity confirmed by NCBI BLAST.  Reverse transcription was carried out on 1 µg 

total RNA with Invitro Reverse transcription reagent.  qRT-PCR used SYBR green PCR 

core reagent in 24 µl volume, with an ABI PRISM 7000 Sequence Detection System.  

GAPDH was used as an internal positive loading control.  Fold change values represent 

averages from triplicate measurements, using the 2-ΔΔCT method.[15] 

 

Results 

Confirmation of EAMG Induction 

After the immunization, serum AChR antibody levels of the experimental group 

were 2.5 μg/ml ± 1.1 (2 weeks) and 8.05 μg /ml ± 3.38 (6 weeks).  AChR antibody was 
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undetectable in the control group throughout the experiment, while all rats in the 

experimental group developed elevations of AChR antibody levels.  At weeks 4 to 5, 

weight loss was observed in EAMG rats and weakness became evident as assessed by 

reductions of grip strength and reduction of observed movement (data not shown).  At 

week 6 experimental rats had a mean weight loss of 11.5% ± 3.45 compared to their peak 

weight, while control rats had a mean weight gain of 5.9% ±1.0 compared to the previous 

week weight.  All rats reached the end of the experiment with no need for early 

euthanasia.   To assess for activation of the complement system, we evaluated C9 

deposition from control and experimental rats.  Endplates from all control muscles had α-

BTX staining and no C9 staining.  Endplates from all EAMG muscles demonstrated 

endplates C9 deposition which overlapped with α-BTX fluorescence (not shown). 

RNA Profile Analysis 

To identify global alterations in gene expression related to EAMG in EOM, DIA, and 

EDL, RNA was prepared and processed for microarray hybridization from AChR 

immunized and control CFA immunized rats.  The percentage of transcripts detected as 

present in each sample ranged from 48 to 63.7 with average 53.3 ± 4.2. The GAPDH 

probes 3 to 5 ratio ranged from 1.06 to 2.66 with average 1.27 ± 0.35, indicating RNA 

quality was appropriate and the hybridization was successful among the samples.  The 

results are consistent with our previous expression profiling studies.[7]    

We found a total of 359 transcripts (Figure 1) altered by two fold in 7 of 9 series 

pairwise comparisons between the experimental and control groups among the muscles.  

Figure 1 shows the degree of overlap in gene differences across the three muscles.  DIA 

showed 147 gene changes, 85 genes were up-regulated and 62 down-regulated, EDL had 
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205 genes changed, 100 were up-regulated and 105 down-regulated, and EOM have 116 

changed, 85 are up-regulated and 31 down-regulated. Using the 359 transcripts, 

hierarchical cluster analysis (Figure 2) demonstrated a distinct expression pattern of the 

genes found to be differentially influenced by EAMG across the three muscles.  

Comparison of the differentially expressed transcripts identified 16 upregulated and 6 

downregulated transcripts shared among the three muscles (Table 1).   Functional 

annotation of the differentially expressed genes identified more than a half are involved 

in signal transduction, metabolism and transcription regulation, suggesting the muscles 

experience adaptation to EAMG directly and to metabolic alterations associated with the 

disease (Table 2, Supplemental Table 2).  Alteration of expression of ten genes (Enc1, 

Nfkbia, Nfix, Errfi1, Glipr2, Dyrk2, Hbb, Hba-a1, Pnpla2, Galnt12) were identified 

common to the three muscles as a response to EAMG.  The roles of these genes fell into 

two broad categories: muscle repair and suppression of inflammatory signals.  The 

Discussion provides detailed consideration of expression alterations. 

In our previous study of passive transfer MG and a study of mdx mice,[7; 16] we 

determined a disease load index (DLI), which sums the absolute fold change values of 

increased and decreased transcript to provide a single transcriptional index of EAMG 

pathology.  In the present investigation, EDL had the greatest DLI (Figure 3), although 

EOM had the greatest total of increased transcript levels with 351 total fold increase to 

101 total fold decrease.  The greater DLI of EDL suggests a greater transcriptional 

response to EAMG than EOM or DIA.   
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Validation of RNA Profile  

We used qPCR to validate results of the RNA profiling.  We determined 

expression levels of 14 transcripts to provide a broad assessment of the array results. 

Three upregulated transcripts (Ankrd1, Mt1a, Cebpd1) and one down regulated transcript 

(Neu2) that by RNA profiling had been identified as altered across all three muscles.  We 

assessed transcripts that were previously identified as altered by EAMG (Chrna1, Pde4b, 

Cts1, Trm63)[7; 17] or involved in inflammation (NFkB, Ctse).  We evaluated transcripts 

that were increased in the RNA profiling of EOM alone (Plunc, Pax6, Rgs2)[18] or 

known to be increased in EOM (Csrp3).[19]  RNA profiling and qPCR results correlated 

well with correlation coefficient of 0.9. (Table 3). 

 

Discussion 

We found distinct genomic signatures for DIA, EDL, and EOM in response to 

EAMG with a small number of gene alterations shared among the muscles (Figure 1).   

The results of array analysis were validated by qPCR with a significant correlation.  

Across the muscles, there was wide variation in the specific gene changes, but a 

commonality of genes that were altered occurred in cell signaling, transcriptional factors, 

and metabolism categories.  Genes associated with muscle injury repair were 

upregulated.  Only, a few genes primarily associated with the immune system or 

inflammation were modified by EAMG, however these were focused on genes that would 

suppress inflammation.  The observation is consistent with histology of muscle of human 

MG, and EAMG in the chronic stage, which does not have evidence of inflammation.[11; 

12; 20] The expression of immunosuppressive genes provides the first insight into why 
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EAMG, by extension human MG, lacks inflammatory infiltrates in muscle after the acute 

induction stage. 

A critical issue that cannot be addressed by our investigation is the degree to 

which individual mechanisms alter transcriptional profiles.  For example, reduced muscle 

activity produced by EAMG, or for that matter, passive transfer MG in our previous 

investigation influences the gene expression pattern. The EOM in particular have unique 

neuromuscular transmission properties with synapses subject to extremely high 

stimulation rates by their motor neurons and a reduction in muscle stimulus would likely 

lead to transcriptional alterations.[21]  Knowing that post-synaptic damage is likely to 

influence presynaptic properties, we cannot dissociate our results to one specific 

alteration produced by EAMG.[22]  As we discuss the influence of alterations in whole 

body metabolism produced by weight loss further will alter gene expression of each 

muscle in a differential pattern given their unique characteristics. 

 

Gene expression alterations unique to EAMG and common to all muscles  

The enhanced expression of five genes (Nfix, Enc, Errfi1, Glipr2, Dyrk2, 

Galnt12) modified by EAMG appear to enhance muscle repair.  Nfix, is a transcription 

factor known to be involved in myogenesis and muscle regeneration.[23]  Enc1 is an 

actin-binding protein, which is involved in neuronal process formation.[24; 25] Its 

expression has not been observed previously in muscle, and presumably, Enc1 would 

function to aid recovery of damaged neuromuscular junctions.  Errfi1 (also known as 

Mig6) is an inhibitor of epidermal growth factor signaling and is increased with cell stress 

and positively regulates cell growth.  Elevation of Errfi1 expression would be expected as 
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a response to muscle injury, either from increased oxidative metabolism or 

neuromuscular junction injury.[26]  Our previous PTMG profiling study identified a 

homolog of Mig6 to be upregulated across all three muscles. Glipr2 is a signaling 

molecule, which has not been well-characterized, but is upregulated in sciatic nerve 

injury from experimental  diabetes.[27]  Glipr2 is involved in transition of epithelial to 

mesenchymal cells by way of epidermal growth factor signaling pathways,[28] which are 

also known to be involved in recovery from muscle injury.  Dyrk2 encodes a tyrosine 

kinase, which negatively regulates growth of cardiac myocytes,[29] and the reduced 

expression of Dyrk2 in EAMG would be expected to promote recovery from injury.  

Galnt12 encodes an acetylgalactosaminyl transferase and polymorphisms in the gene are 

associated colonic cancer.[30; 31]  The increased expression of Galnt12 likely enhances 

protein modifications that may be involved in the regenerative process.   

Nfkbia (nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor, alpha) is a transcriptional factor with increased expression among all three 

muscles exclusive to EAMG.  Nfkbia inhibits cell apoptosis by inhibition of caspase.  In 

rats, Nfkbia is decreased in diet-induced obesity and hyperlipidemia.  Nfkbia can inhibit 

NFκB by direct binding and regulation of transcriptional responses to NFκB, including 

cell adhesion, immune and proinflammatory responses, apoptosis, differentiation and 

growth.[32]  In addition to its effects on contractility, Fkbp5 modulates NFκB activity 

and in tandem with Nfkbia would reduce inflammatory signaling in muscle.[33]  

In addition, to the primary categories of muscle repair and immunosuppression, 

there were three gene changes that would influence metabolism. The Dyrk2 gene product 

phosphorylates glycogen synthase[34] and therefore, the gene’s down-regulation would 
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be a response to a shift to fatty acid oxidation (see discussion below). Pnpla2 encodes a 

lipase that hydrolyzes fatty acids from triacylglycerol and mutations of the gene produce 

a myopathy.  The upregulation of the gene’s expression is also in keeping with the overall 

shift to fatty acid oxidation.[35] This change to oxidation is a reflection of decreased 

availability of glucose and would further be reflected in a reduction of muscle force 

generation.  The reason for the reduced expression of the two hemoglobin gene 

transcripts (Hbb, Hba-a1) in muscle is not clear.   

Gene Expression Changes Specific to EAMG 

 Consistent with overall profile, alterations of genes involved in metabolism were 

the most common category for EOM. The gene encoding the alpha subunit of the 

acetylcholine receptor was increased in response to EAMG in skeletal muscle an EOM 

previously.[36; 37] We evaluated expression of four genes by qPCR expressed at high 

levels in EOM, three of which appear to be responsive to injury.  Pax6 is a transcriptional 

regulator involved in eye development and during development influences muscle 

formation.[38]  Its increased expression in EOM suggests that it may be responding to 

injury, perhaps through the elevated activity of muscle satellite cells in EOM.[39]  Rgs2, 

a regulator of G-protein signaling, also appears to be involved quiescent stem cell 

renewal of muscle.[40] Cspr1, a member of the LIM protein family, has many functions 

in skeletal and cardiac muscle including myocyte differentiation.[41]  Plunc is expressed 

in nasal epithelial tissue and has a bactericidal effects suggesting a role in innate 

immunity.[42]  Its upregulation in EOM in response to EAMG suggests a response to 

antibody-mediated injury but otherwise is unclear. 

Gene Expression Alterations Common to All Muscles and PTMG   
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PTMG is produced by administration of either mono- or poly-clonal antibody 

specifically directed towards the autoantigen, in the present study the skeletal muscle 

AChR.[6]  The model mimics the final effector pathway of autoantibody destruction 

observed in humans with MG.  The onset of muscle injury is rapid and is accompanied by 

muscle inflammation not seen in the active model or the human disease.  In our previous 

study of PTMG of EDL, DIA, and EOM,[7] RNA profiling demonstrated a greater 

number of gene alterations, a preponderance of immune-related gene expression 

alterations, and EOM had the greatest DLI.  There were specific gene alterations common 

among the three muscles and interestingly among these, several were shared with our 

present RNA profile of EAMG.[7]  These ten genes were Ankrd1, Gpnmb, Cebpd, Pdk4, 

Angptl4, Ddit4, Gadd45a, Mt1a, Fmo2, and Fkbp5. 

Evidence of immunosuppressive response across muscles. Ankrd1 has been found to 

be increased in response in several forms of muscle injury, including denervation, motor 

neuron disease, stretch, and starvation.[43; 44; 45]  Ankrd1 also down regulates NFκB as 

an anti-inflammatory signal,[46] which would contribute to the lack of local muscle 

inflammation in EAMG, while its increase in PTMG may be a response to acute 

inflammation observed.  Osteoactivin (Gpnmb) is a type I transmembrane glycoprotein 

that is expressed in numerous tissues including skeletal muscle.  Osteoactivin has 

immunosuppressive effects[47] and promotes maintenance of innervation,[48] these 

properties would aid recovery from injury by EAMG.  In contrast to the PTMG study in 

which an inflammatory infiltrate was present, we can be confident that the source of 

Gpnmb transcripts is from the skeletal muscle.  The increase of Cebpd, a transcriptional 

factor known to reduce pro-inflammatory cytokines,[49; 50] would also serve  to limit 
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muscle inflammation in response to EAMG.[51]  Increased expression of cortisone-

regulated target genes also would indicate a general anti-inflammatory state, which would 

also be reflected in metabolic alterations. 

Metabolic Alterations Influenced by EAMG 

The other genes in common across MG models and the three muscles under study 

were primarily involved in metabolism.  At the time of euthanasia, rats were 

demonstrating weight loss, however, in comparison an RNA profile of rat gastrocnemius 

after fasting, the gene alterations observed with EAMG are distinct.[52]  The pyruvate 

dehydrogenase kinase gene is a key regulatory enzyme in skeletal muscle involved in 

switching the primary energy source from glucose to fatty acids in response to 

physiological conditions. Transcription of the PDK4 gene is activated by fasting in a 

tissue-specific manner[53; 54] and after both short-term high-intensity and prolonged 

low-intensity exercise.  Angptl4 (an inhibitor of lipoprotein lipase) expression was 

increased, and its protein product is directly involved in reduction of glucose utilization, 

enhanced lipid metabolism, and increased insulin sensitivity during fasting.[55; 56]  

Metallothioneins are low molecular weight, cysteine–rich zinc binding proteins and serve 

to protect cells after oxidative stress injury.[57]  Mt1a is a metallothionein, which is 

induced in skeletal muscle of animals in catabolic states and physiological stress 

situations, [58] which also result in elevated levels of glucocorticoids and reactive 

oxygen species.  Another metallothionein, Mt1e, was elevated among all muscles in the 

present study, but not the PTMG investigation.  The increase in flavin-containing mono-

oxygenase 2 (Fmo2) also would serve as a response to an increase in reactive oxygen 

species in the switch to fatty acid oxidation.[59] These observations suggest that EAMG 
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directly or indirectly may increase intracellular reactive oxygen species with muscle 

responding with a potential adaptive response to systemic metabolic alterations.  The 

uniform response to stress is further confirmed by increased expression of Ddit4 and 

Gadd45a.  Ddit4 is a DNA-damage-inducible transcript, inhibits mTOR (downstream 

kinase of IGF pathway) functional control of cell growth in response to energy stress.[60; 

61]  Gadd45a is activated by physiological stress and DNA damage serving to modulate 

cell cycle arrest and apoptosis.[62]  Increased Cebpd expression occurs with denervation 

and food deprivation.[63; 64]  In skeletal muscle Cebpd expression would moderate 

myostatin expression and potentially produce muscle atrophy.[65]   

Muscle contractility gene influences  

The increase of Fkbp5 (FK506 binding protein) may serve to moderate calcium 

activation through the ryanodine receptor.[59]  In PTMG, muscle contractility is 

compromised to a greater extent than expected from the neuromuscular transmission 

defect alone.  An increase in Fkbp5 would reduce influx of calcium and negatively 

impact muscle contractility.  Muscle force generation is also reduced in isolated muscle 

preparations treated with sera from patients with MG.[66; 67] In EDL, Zfn28 was found 

to be increased.  Zfn28 is a RING zinc finger protein family member, which localizes to 

the Z-line and M-line lattices of myofibrils. In vitro binding studies indicate that Zfn28 

binds to titin near the region responsible for kinase activity. Since these family members 

can form heterodimers, this suggests that these proteins may serve as a link between titin 

kinase and microtubule-dependent signal pathways in muscle.[68]   Alterations in the 

signaling complex could also moderate contractility through alterations in elasticity.   
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Neu2 was the only gene reduced in expression among all three muscles and 

common to the RNA profile of PTMG.  Neu2 encodes a glycohydrolytic enzyme that is 

primarily expressed in mature muscle.[69]  The function of Neu2 has not been well 

characterized but is considered to enhance muscle regeneration and development, and its 

reduced expression in EAMG may compromise muscle repair.  

RNA profile across muscles 

Numerous clinical observations demonstrate a differential effect of neuromuscular 

disorders on specific muscle groups.  Our previous RNA expression analysis of PTMG 

showed that EOM had the greatest DLI, which we had considered consistent with the 

greater susceptibility of EOM to disease observed in human MG.  In the PTMG, 

transcript alterations were largely related to immune activity.  In EAMG, EDL had the 

greatest transcriptional response to EAMG but this was related to preponderance of 

metabolic alterations.  EOM given their specialized function in moving the globe and 

small size would not contribute to whole body metabolic control in contrast to EDL and 

other large muscles, which are critical to regulation of glucose, fatty acid, and amino acid 

synthesis and utilization.   

Regarding specific gene expression alterations of note, the AChR subunit α-

subunit was increased consistent with previous EAMG investigations.   The expression 

difference was likely detectable in EOM because of its high innervation ratio and the 

increased expression reserved to subsynaptic nuclei.[70]  Spp1 (osteopontin) was 

upregulated in EOM. OPN is a glycosylated phosphoprotein originally identified in bone 

matrix, but now found to be produced in many cell types. OPN is considered a pro-

inflammatory cytokine, and increased levels have been associated with inflammatory 
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muscle disease[71; 72] [73] and muscular dystrophy.[74]  Its elevated expression is in 

distinction from the upregulation of an anti-inflammatory state of RNA profile, which 

would support the contention that EOM has a unique immune environment, which in 

certain conditions enhances susceptibility to autoimmune and inflammatory disorders.[9] 

Metallothionein family members are highly induced by catabolic states where 

found to be elevated across all muscle groups.[75]  Foxo1a, a transcription factor, was 

increased in EDL and diaphragm by EAMG and is also increased in states of catabolism. 

[75] Cathepsin L was elevated in EDL with EAMG which is also the case for muscle 

atrophy. 

Clinical Relevance 

As with any animal study there are limits in application of results to human 

disease.  The rat and human immune systems possess unique characteristics, and the 

exogenous administration of autoantigen with adjuvant does not mimic the spontaneous 

development of the breakdown in tolerance of the human disease.[11]  However, the 

ultimate common pathway of antibody attack with complement activation is shared 

between EAMG and human MG.  The subsequent influence of generalized weakness on 

the animal and human also are likely to have commonalities.  

The EAMG rats developed moderate weight loss, which is likely driving the gene 

expression changes related to metabolism.  The three muscles shared similar responses in 

shifting to from glycolytic to oxidative metabolism.  In keeping with this alteration 

pathway the same response in terms of stress and free radical metabolism pathways, and 

a number of nuclear receptors target genes involved in lipid and glucose metabolism were 

altered by EAMG.  Cortisone or dexamethasone target genes were induced and insulin-
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moderated pathways were inhibited.  This was true for EOM, which relies on glucose and 

lactate for generation of energy.[2; 4]  These observations demonstrate that RNA profiles 

related to metabolism undergo significant alterations by EAMG.  

In muscle, there are four pathways for protein degradation: lysosomal proteases 

including the cathepsins; calcium-dependent proteases; cytosolic ATP-dependent 

(proteasome); and cytosolic ATP-independent proteolytic pathways.  In EDL and DIA 

FBXO32(atrogin-1) and Trim63(MuRF-1) were upregulated, these two genes are E3 

ubiquitin-ligase, which are involved in ubiquitin-proteasome proteolysis pathway and are 

markers of muscle atrophy.[76; 77]  Their common transcription factor, Foxo1a was also 

increased in expression.[36; 78]  Proteasome pathway related genes were more 

prominently expressed in EDL compared with DIA and EOM.  EDL can be considered a 

“standard” skeletal muscle, which participates in regulation of whole body metabolism.  

These data suggest the EAMG leads to accelerated proteolysis, which is also likely to 

occur among patients with significant weakness.  Since the active model of EAMG more 

closely mimics MG in humans, it is likely that metabolic alterations should be a focus of 

investigation in clinical studies. 

Conclusion    

 Our study demonstrates the complex alterations occurring on a transcriptional 

level in response to the direct effects of acetylcholine receptor antibody attack on the 

neuromuscular junction as well as secondary influences on nerve-muscle communication 

and development of weight loss. In our investigation we cannot uncouple these effects.  

We show that alterations in metabolism related genes occurs, an anti-inflammatory 

response develops, and muscle repair programs develop.  Despite an expectation that 
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EOM would have a greater DLI, this was not the case indicating that the reasons for the 

greater susceptibility of EOM to MG are not reflected in the transcriptional profile. 
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Table 1. Gene Transcript Changes Common to All Muscles 

Symbol Name  DIA EDL EOM Classification
Ankrd1 ankyrin repeat domain 1 5.6 5.5 3.6 transcription
Cebpd  CEBP delta 2.9 8.4 2.5 transcription
nfix nuclear factor I/X -4.7 -2.0 -2.9 transcription
Nfkbia nuclear factor of kappa light chain 2.3 2.8 2.3 transcription
Ddit4 DNA-damage-inducible transcript 4 3.1 4.7 3.1 stress
Gadd45a growth arrest and DNA-damage-inducible 45 alpha 2.3 2.1 2.5 stress
Mt1a metallothionein 1a 4.7 8.2 3.3 stress
Errfi1 ERBB receptor feedback inhibitor 1 2.9 3.0 2.8 stress
Mt1e metallothionein 1e 3.0 5.5 2.8 stress
Gpnmb glycoprotein (transmembrane) nmb 2.2 3.1 5.2 signal
Glipr2 Golgi- associated PR-1 protein -2.4 -2.4 -2.2 signal
Dyrk2 Dual specificity tyrosine-phosphorylation-regulated kinase 2 -2.4 -2.3 -2.4 signal
Enc1 ectodermal-neural cortex 1 2.4 2.1 2.1 signal
Hbb hemoglobin beta chain complex -4.8 -2.4 -3.9 metabolism
Neu2 neuraminidase 2 -2.9 -4.0 -2.2 metabolism
Hba-a1 hemoglobin alpha 2 chain -3.6 -2.3 -3.5 metabolism
Pnpla2 patatin-like phospholipase domain containing 2 2.4 2.8 2.1 metabolism
pdk4  pyruvate dehydrogenase 2.4 3.5 2.3 metabolism
fmo2  flavin containing monooxygenase 2 4.0 3.0 3.9 metabolism
galnt12 GalNAc transferase 12 3.5 2.8 2.6 metabolism
Angptl4 angiopoietin-like 4 6.4 6.2 17.5 metabolism
Fkbp5 FK506 binding protein 5 4.5 5.3 5.6 immune
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Table 2.  Transcript Changes in Percent by Category 

 Shared EOM  DIA EDL 

Transcription 18 5 7 19 

Stress 22 0 1 5 

Metabolism 32 21 6 17 

Signaling 18 33 44 25 

Proteolysis 0 5 4 5 

Muscle-Related 0 4 1 5 

Inflammatory 5 8 7 2 

*ECM 5 3 0 2 

EST/Unknown 0 21 30 20 

Extracellular Matrix 
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Table 3. Fold Change Comparison Between Real-Time PCR and Microarray 
 
 DIA  EDL  EOM  
GENE SYMBOL qPCR Array qPCR Array qPCR ARRAY 
ANKRD1 11.7 6.2 8.1 5.5 5.6 3.2 
MT1A 4.2 4.7 4.8 8.2 5.3 3.4 
CEBPD1 5.3 3.0 6.5 4.5 3.3 2.2 
PDE4B 3.2 2.0 2.8 1.7 2.0 1.3 
CTS L 2.8 1.8 2.7 2.8 2.2 1.4 
CHRNA1 2.1 1.9 2.5 1.7 3.7 2.3 
CTS E  1.9 1.2 0.9 1.0 7.5 7.6 
CSRP3 5.9 2.4 5.4 3.3 3.0 1.4 
NEU2 -3.2 -2.7 -3.8 -4.0 -1.9 -2.2 
NFKB 1.1 1.0 1.8 1.3 1.3 1.0 
PAX6 N/A 0.5 N/A 1.3 6.7 4.0 
PLUNC N/A 0.9 N/A 1.0 4.1 3.0 
RGS2 1.4 1.1 1.0 0.8 -1.8 -1.3 
TRIM63 6.3 2.4 4.3 2.5 1.3 1.0 
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Figure Legends 

 

Figure 1. Venn diagrams showing the numbers of differentially expressed transcripts in 

EAMG muscles compared with control rats shared by or unique to DIA, EDL and EOM. 

 

Figure 2. Hierarchical cluster analysis using 359 gene probes identified as differentially 

expressed in EAMG among DIA, EDL and EOM.  The three independent replicates of 

each group are represented.  Expression ratios are color-coded. The scale at the right 

denotes normalized expression levels (red, high expression; blue, low expression) 

 

Figure 3. The aggregate DLI of the three muscles for EAMG illustrate disease 

progression by summing the absolute values of fold changes of differentially regulated 

transcripts in each muscle. 
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