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REVIEW Open Access

Aneuploidy: a common and early evidence-
based biomarker for carcinogens and
reproductive toxicants
Daniele Mandrioli1, Fiorella Belpoggi1, Ellen K. Silbergeld2 and Melissa J. Perry3*

Abstract

Aneuploidy, defined as structural and numerical aberrations of chromosomes, continues to draw attention as
an informative effect biomarker for carcinogens and male reproductive toxicants. It has been well documented
that aneuploidy is a hallmark of cancer. Aneuploidies in oocytes and spermatozoa contribute to infertility,
pregnancy loss and a number of congenital abnormalities, and sperm aneuploidy is associated with testicular
cancer. It is striking that several carcinogens induce aneuploidy in somatic cells, and also adversely affect the
chromosome compliment of germ cells. In this paper we review 1) the contributions of aneuploidy to cancer, infertility,
and developmental abnormalities; 2) techniques for assessing aneuploidy in precancerous and malignant lesions and
in sperm; and 3) the utility of aneuploidy as a biomarker for integrated chemical assessments of carcinogenicity, and
reproductive and developmental toxicity.

Keywords: Aneuploidy, Carcinogens, Reproductive toxicants, Endocrine disruptors, Chromosomes, Early diagnose,
Bioassays, Risk assessment, mFISH, Laser scanning microscopy

Background
Biomarker of effect is defined as a measurable biochem-
ical, physiologic or other alteration in an organism that
is associated with an established or possible health im-
pairment or disease [1]. Effect biomarkers have a central
role for toxicological evaluations including in vitro stud-
ies in tissue samples, in vivo studies in animal models,
and for early disease detection and monitoring of health
status in humans [2, 3]. Biomarkers of effect are widely
explored in medicine [4], environmental epidemiology
[5] and public health [6]. Together with the benefits for
health and safety, using effect biomarkers may result in
lower costs to the public, industry and governments fa-
voring cost-effective approaches for disease prevention
[7]. They can contribute to early detection and predic-
tion of adverse effects, supporting prioritization and
screening programs for substances of concern [8]. Their
utility has resulted in an increasing demand for new and

informative biomarkers of effect. Aneuploidy, because its
mechanisms are well known and its adverse effects are
well established, is being increasingly used as an inform-
ative effect biomarker [9, 10]. Aneuploidy is a hallmark
of cancer and causes developmental abnormalities in all
species where the condition has been examined [11, 12].
Aneuploidy is defined as “one or more whole chromo-
somes (numerical chromosomal aneuploidy) absent from
or in addition to the euploid complement, or having one
or more chromosome segments (segmental or structural
aneuploidy) absent from or in addition to the euploid
complement” [13]. The euploid complement, or the nor-
mal content of chromosomes for a cell, always exists as
an exact multiple of the haploid number of chromo-
somes: germinal cells are haploid (1 copy of each
chromosome, 23 chromosomes total), somatic cells are
generally diploid (2 copies of each chromosome, 46
chromosomes total) and in some rare cases can be poli-
ploid (more than 2 copies of each chromosome, for ex-
ample muscle, macrophages). Therefore any gain or loss
of chromosomal material by the euploid complement
creates an-euploidy (in Greek euploidy literally means
“normal form” –of the nucleus-, while an-euploidy
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means “abnormal form”). The role of aneuploidy in can-
cer and reproductive biology has been investigated since
the last century, but only relatively recently have tech-
nical advances translated early findings from basic sci-
ence to experimental, pathological and epidemiological
settings. Following the early pioneering works by David
Hansemann [14], it was the talented couple Theodore
Boveri and Marcella O’Grady [15, 16] that in 1904 first
provided systematic and detailed evidence of the role of
aneuploidy in fertilization, development and cancer [17–
20]. They were already aware that chemical and occupa-
tional exposures could induce cancer, another pioneering
view for the time, “the connection between cancer and
certain chemical irritants is even clearer than it is be-
tween cancer and the physical agents I have mentioned.
I need only refer to the cancers of paraffin workers.”
[21]. Other historical steps that elucidated the role of an-
euploidy in cancer, reproductive, and developmental tox-
icity include: 1929, Barbara McIntock discovers the
disruptive role of aneuploidy in maize development [22];
1956, Julian Huxley introduces the concept of cancer as
a new biological species with a high degree of genetic
heterogeneity [23]; 1959, Jerome Lejeun discovers that
an extra copy of Chromosome 21 causes Down Syn-
drome [24]; 1961, Theodore Hauschka documents that
the euploid content in human and rodent tissues is
strongly conserved and observes that leukemia cells are
consistently aneuploid [25]; 1971, Andreĭ Pavlovich
Dyban and Vladislav Sergeevitch Baranov show through
Robertsonian translocation the reproductive and develop-
mental effects of all the possible trisomies in mice [26];
and 1986, Mitsuo Oshimura and J. Carl Barrett elucidate
the mechanisms of chemical induced aneuploidy in mam-
malian cells [27].
The mechanisms that link aneuploidy to adverse

outcomes are well determined: aneuploid germinal cells
encounter difficulty in normal fertilization and develop-
ment and aneuploid tumor cells never express a normal
phenotype. Down Syndrome is the best example of how
a single extra copy of one of the smallest chromosomes
(containing normal genes) may disrupt organs and cellu-
lar phenotypes. Down Syndrome patients with complete
trisomy 21 present more severe symptoms and a more
disrupted phenotype than incomplete trisomy 21 [28–
30]. In humans, copy number changes of autosomes
(non-sex chromosomes containing normal genes) are
generally not compatible with normal development or
survival. In fact, all of the autosome copy number
changes, with the exception of trisomy 21 (Down Syn-
drome), trisomy 18 (Edwards Syndrome) and trisomy 13
(Patau Syndrome), are not compatible with life after birth.
Most babies born with trisomy 18 or 13 present several
congenital abnormalities and die by age 1 [31, 32]. Recent
mechanistic experiments on budding yeast have shown

how aneuploidy directly affects gene expression at both
the transcriptome and proteome levels and can generate
significant phenotypic variation in a “dose dependent”
fashion (the higher the degree of aneuploidy the higher
the disruption of the phenotype) [33].
Yet, the presence of aneuploidy at the cellular level

does not necessarily imply a disrupted phenotype at the
organ level. High frequencies of aneuploidy have been
reported in experimental conditions in the liver of
knock-out mice after tyrosinemia-induced hepatic injury
[34] and have been observed routinely through fluores-
cence in situ hybridization (FISH) in brain tissues of
rodents and human [35], where mature aneuploid neu-
rons were found to be functionally active and integrated
into brain circuitry. This finding originally fueled specu-
lation that aneuploidy might provide a selective advan-
tage in these organs, but recent results obtained with
single cell sequencing demonstrate that aneuploidy oc-
curs much less frequently in the liver and brain than
previously reported and is no more prevalent in these
tissues than in skin [36]. In contrast, aneuploidy fre-
quencies are significantly increased in organs affected by
chronic degenerative diseases such as Alzheimer's
disease, ataxia telangiectasia and liver cirrhosis [37, 38].
Because aneuploidy is well characterized and has mul-

tiple impacts on organismic health and development, it
is an excellent biomarker for characterizing the repro-
ductive toxicant and carcinogenic properties of chemi-
cals. In the following sections we will review 1) the role
of aneuploidy in cancer and reproductive toxicity; 2) the
overlap among chemical classes between sperm genotox-
icants, sperm aneuploidogens (substances inducing an
altered number of whole chromosomes) and chemical
carcinogens; 3) the different techniques available to as-
sess aneuploidy in precancerous and malignant lesions
and sperm; and 4) the experimental and epidemiological
possibilities for integrating aneuploidy measurement into
integrated chemical assessments.

Aneuploidy in cancer and precancerous lesions
Aneuploidy, which includes both numerical and struc-
tural chromosomal abnormalities, is a hallmark of can-
cer [11]. It is a common characteristic of cancer and
precancerous lesions, regardless of whether the causative
agents are genotoxic, which directly damage the DNA,
or non genotoxic carcinogens that may indirectly induce
aneuploidy via different mechanisms, for example favor-
ing higher replication rates in a tissue (as in the case of
carcinogens with hormonal activity) and increasing the
risk of errors during replication (in fact at each replication
there is an intrinsic risk in human cells of developing de
novo aneuploidy in 1:1000–1:10000 cells) [39–43]. By
unbalancing the expression of thousands of genes [44]
and proteins [45], aneuploidy disrupts the normal cell
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phenotype [46] and automatically destabilizes the karyo-
type, altering replication mechanisms [47] and catalyzing
random aneuploidy events in single mitotic steps [48].
Cells from the same tumor are known to be clonal and in
fact they share the majority of the karyotype (including
clonal markers and chromosomal rearrangements), but
every single cancer cell presents de novo numerical and/
or structural chromosome rearrangements that are unique
in each respective cell [49]. A recent analysis of 36,859
karyograms of 37 cancer types available in the Mitelman
Database, the largest database of karyotypes of cancerous
lesions from all sites maintained as part of the Cancer
Genome Anatomy Project of the US National Cancer In-
stitute (http://cgap.nci.nih.gov/Chromosomes/Mitelman),
revealed that all the cancers were aneuploid; there was not
a single case with a normal chromosome number (n = 46)
that did not carry at least one structural or numerical ab-
erration [50]. Indeed, karyotypic analysis of thousands of
cancers has revealed the existence of karyotypic patterns,
with aneuploidies that are recurrently found in several dif-
ferent cancer types, and others that are specific to individ-
ual tumors and tissues/organs of origin [51], but most
aberrations appear to be non-specific and random [52],
presenting individual, variant karyotypes, with characteris-
tics each time resembling a new species [49, 53, 54].
A fundamental distinction between cancer and pre-

cancerous cells is clonality: cancerous cells are clonal
and aneuploid, which means all the cells from the
primary and secondary lesions (metastasis) share the
same ancestor and common markers [55, 56]. Clonal-
ity is routinely used as strict criteria for the patho-
logical diagnosis of cancer, particularly, for the
diagnosis of leukemia and lymphoma, and it can be
assessed with different techniques (IHC, GSH, FISH,
PCR) [55, 57]. In contrast, precancerous cells in dys-
plastic lesions are consistently aneuploid but not
clonal. This may be better explained by investigating
the relation between aneuploidy and field carcinogen-
esis. Field carcinogenesis (or cancerization) predicts
that cancer occurs more often over dysplastic precan-
cerous lesions induced by carcinogens [58], a concept
originally proposed by Slaughter in 1953 for oral can-
cer [59] that now applies to every epithelial site. This
explains the preventive efficacy of early diagnosis and
treatment of dysplastic local lesions arising in specific
“fields”, such as PAP-test (cervix cancer) [60], dysplas-
tic polyps (colon cancer) [61], Barrett esophagus [62],
leukoplakia (oral cancer) [63], and dysplastic nevi
(melanoma) [64]. Virtually all dysplastic lesions
present higher rates of aneuploid cells and their de-
gree of aneuploidy often correlates with the likelihood
of malignant progression in breast [65], colon [66],
lung [67, 68], prostate [69], melanoma [70] oral [71],
esophagus [72], cervix cancer [73] and leukemia [74].

Sperm aneuploidy can also be considered a preneo-
plastic lesion (e.g., men with Down and Klinefelter syn-
dromes present higher rates of testicular cancer) as
shown by Skakkebaek et al. [75]. Different authors have
proposed tetraploidy as the first telltale step of the char-
acteristic aneuploidy cascade of carcinogenesis [76–78].
Cancers have been shown to arise in non-clonal aneu-
ploid dysplastic lesions induced by carcinogens in ham-
sters, mice, and rats exposed to carcinogens. When a
clonal expansion occurs in dysplastic lesions, it is more
appropriate to use the term carcinoma in situ, because
clonality is an unique characteristic of cancer (carcin-
oma) cells [79, 80].

Carcinogens cause aneuploidy
Whereas in biology aneuploidy often refers to any
chromosomal imbalance (any karyotype different from
diploid for somatic cells or different from haploid in the
case of germinal cells), many efforts have been attempted
in toxicology to differentiate clastogens (substances indu-
cing disruption or breakages of chromosomes, leading to
sections of the chromosome being deleted, added, or rear-
ranged), from aneuploidogens [81]. Both clastogens and
aneuploidogens can lead to the formation of micronuclei,
a small extra-nucleus containing a whole chromosome or
a fragment of a chromosome [82]. Several techniques have
been developed for distinguishing clastogens from aneu-
ploidogens in micronuclei tests, for example through the
presence of a centromere/kinetokore for whole chromo-
somes, which are absent in chromosome fragments [83].
The distinction between the two categories is interesting
for mechanistic purposes, yet they do not preclude simi-
lar biological consequences. Both clastogens and
aneuploidogens are more likely to be carcinogens [84,
85], many carcinogens are both clastogens and aneu-
ploidogens (for example X-rays and benzene) [86, 87],
and both aneuploidogens and clastogens are able to
foster further chromosomal instability (both partial and
whole chromosome loss and gain) [88, 89]. Overall mech-
anisms and the continuum of the effects seem directly
proportional to the disruption of the chromosomes. The
inclusive definition of aneuploidy provided by Dyer in
1970 seems most consistent with its biological effects,
“one or more whole chromosomes (numerical chromo-
somal aneuploidy) absent from or in addition to the
euploid complement, or having one or more chromosome
segments (segmental or structural aneuploidy) absent
from or in addition to the euploid complement.” [13]. In
fact, Oshimura and Barret, adopting Dyer’s definition, fur-
ther specified that “an aneuploidogen may or may not be
a clastogen” and anticipated that “aneuploidy in the form
of a partial or complete chromosome duplication repre-
sents one form of gene amplification” [27].
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Aneuploidy in sperm and reproductive toxicity
Aneuploidy involving at least a single chromosome
causes developmental abnormalities in all species where
this condition has been examined [12]. An abnormal
chromosome complement is thought to contribute to
more than 50 % of early losses [90]. Many new gene
mutations seen in offspring [91–93] and several abnor-
malities in the numbers of the sex chromosomes [94]
come from the father’s sperm. Sperm aneuploidy is asso-
ciated with infertility, miscarriages, and congenital
abnormalities [95–97]. The most common aneuploidy in
humans at birth involves an abnormal number of X or Y
chromosomes, [98]. Children with sex chromosomal
abnormalities, characterized in Klinefelter and Turner
syndromes, can have reproductive disorders, behavioral
difficulties, and/or reduced intellectual capabilities
compared to their siblings [99, 100]. While US
specific data are not available, European data from
consecutive birth studies report the incidence of
Klinefelter syndrome is increasing. A significant in-
crease in the incidence of XXY trisomies in newborns
between 1967 and 1988 has been reported [101], but
no increases in the incidence of XXX or XYY triso-
mies. XXY trisomies frequently arise from nondisjunc-
tion of the XY (paternal) bivalent during meiosis I,
and no observed increase in XXX trisomy (predomin-
ately maternally-derived) was observed, suggesting
that there may be underlying environmental causes
affecting non-disjunction during spermatogenesis.
Data from the European Surveillance and Congenital
Abnormalities [100] registry show significant regional
differences in the prevalence of sex chromosome
trisomies reported between 2000 and 2005; prevalence
was lowest in Poland (0.19 per 10,000 births) and
highest in Switzerland (5.36 per 10,000 births) [100].
These differences (up to 25 fold) might also be
explained in part by the variation across European
registries in the availability of prenatal screening
(ultrasound and antenatal screening for Down’s
syndrome) as well as organizational and cultural
factors [100].
Elevated rates of aneuploidy in sperm are corre-

lated with higher frequencies of chromosomal abnor-
malities in preimplantation embryos [102, 103], lower
fertilization and implantation rates [104], and higher
miscarriage rates [105]. Increased disomy is associ-
ated with inferior semen parameters in multivariate
adjusted models [106]. Aneuploidy occurs when mei-
osis is disrupted during gametogenesis. It is not
known how genotoxicants interfere with the meiotic
phase, but infertile men often have an impaired
chromosome synapsis and an increased frequency of
chromosomes that are missing a recombination site
[99, 107]. These errors make the cells susceptible to

meiotic arrest and production of aneuploid gametes.
Altered recombination impacts nondisjunction; non-
recombinant chromosomes are susceptible to nondis-
junction due to reduced connections among homolo-
gous chromosome pairs [108]. Chemicals known to
disrupt hormone signaling have been shown to affect
mammalian recombination and germ cell aneuploidy
[109], while other genotoxicants induce structural
and numerical chromosomal aberrations that are not
repaired by male or female DNA repair machinery
during fertilization [110]. Changes in the endocrino-
logic environment of the testis affect the rate of
meiotic segregation errors [111], and p,p’-DDE for
example has been shown to impact calcium ion
channels (CatSper) to affect Ca2+ increases which
impact sperm capacitation, chemotaxis, hyperactiva-
tion, and acrosomal exocytosis [112]. Men exposed
to genotoxic compounds have been found to have
significantly higher frequencies of chromosomally
abnormal sperm [113–115].

Sperm aneuploidogens and carcinogens
Carcinogens can be developmental and reproductive
toxicants, but these effects may or may not follow simi-
lar pathways. How many carcinogens are capable of pro-
ducing sperm aneuploidy and how many sperm
aneuploidogens are also carcinogens? A complete answer
is elusive to date, mainly because of the lack of sperm
aneuploidy testing in experimental models and epi-
demiological cancer cohorts, but some initial evidence
has emerged. A recent review of the reproductive health
of men with occupational exposures [116] listed seven
substances known to affect sperm genetic integrity:
phthalates [117], styrene [118], organophosphates [119],
carbaryl [120], fenvalerate [121], lead [122, 123], and ben-
zene [124]. Six of these seven are known or suspected car-
cinogens according to the Report on Carcinogens of the
US National Toxicology Program [125] or are listed by the
State of California (http://oehha.ca.gov/prop65.html) as
chemicals known to cause cancer. For one chemical (fen-
valerate), adequate carcinogenicity data are not available.
Chemicals that can induce sperm aneuploidy appear more
likely to be carcinogenic. On the other hand, carcinogens
should also be screened as potential sperm aneuploido-
gens, although it should be expected that only some of the
aneuploidogens that are carcinogenic would also pass the
blood-testis barrier. Additionally, germinal reproductive
check points may prevent, at least in part, chromosomal
damage. This is suggested by the finding that rates of an-
euploid lymphocytes induced by benzene are significantly
higher than aneuploidy rates in sperm [126]. Sperm aneu-
ploidogens are often not only aneugenic to sperm, but also
to other organs [43, 126–128].
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Techniques available to assess aneuploidy in
precancerous and malignant lesions and sperm
Aneuploidy, as an effect biomarker, is not a substitute for
other fundamental indicators in cancer cells, such as genes
and markers of proliferation (Ki-67), receptors that iden-
tify the tissue of origin of the lesion (IHC), or proteomic
and genomic (and epigenomic) profiling of cancer cells.
The main value of aneuploidy as an effect biomarker is
that is a measurable characteristic of virtually any bio-
logical and pathological tissue: it can differentially diag-
nose pre-cancerous and cancerous lesions. In terms of its
utility for sperm assessment, aneuploidy is informative
well beyond the standard sperm quality indicators such as
concentration, motility and morphology. Owing to tech-
niques such as Laser Scanning Microscopy (Figs. 1 and 2),
aneuploidy can be evaluated on the same slide, at a single
cell level of resolution, together with other techniques and
biomarkers such as IHC and Ki-67 for an optimal evi-
dence based evaluation of malignancy, clonality, tissue of
origin and replication rate of the lesion [129–131]. Pro-
gress in semiautomatic sperm scoring has advanced preci-
sion in determining sperm aneuploidy rates while saving
on time and operator burden [132, 133] and is making hu-
man biomarker assessment more feasible for both cancer
biology and molecular epidemiology laboratories [134].

Future developments
Future advancements that will increase sensitivity in
aneuploidy detection [135] include: improved interphase

chromosome staining, with higher numbers of probes
and aberrations tested on the same cell [136, 137] and
the use of Quantum Dots that present higher fluorescence
efficiency, lower photobleaching and vastly better photo-
stability compared to organic fluorophores [138–140].
Another possible advancement will consist of the use of
the specimens fixed in alcohol rather than formaldehyde
[141]. Alcohol preserves DNA [142], RNA [143] and pro-
teins [144] better than formaldehyde with comparable, if
not superior, performance for molecular analysis, cy-
tology and microscopy [145–148] and could dramatic-
ally lower the exposure of the operators to a known
human carcinogen [149, 150].
Causes of oocyte aneuploidy are unknown, but it is

the most common cause of pregnancy loss and birth
defects [94]. Ovarian impacts are sometimes evaluated
in toxicology studies, albeit less frequently than
primary organs such as liver, lung, and brain. Oocyte
aneuploidy might also be an interesting biomarker for
chemical carcinogenicity or reproductive toxicity [151,
152]. Oocyte aneuploidy screening is likely also to
advance in vitro fertilization techniques. In the con-
trolled setting of the assisted reproduction clinic,
aneuploidy in the embryo is the most frequently ob-
served cause of failure to achieve a pregnancy. In this
context, opportunities for more fully assessing oocyte
aneuploidy are promising because women may be
willing to donate remainder oocytes for epidemiologic
and mechanistic studies [153–155].

Fig. 1 Sperm Fluorescence in situ hybridization results for
chromosomes 18, X and Y. Full position image. Cells are displayed
using a white for ToPro. Composite image of channels acquired for
each of the four signals: SpectrumAqua (18), SpectrumGreen (X),
SpectrumOrange (Y) and the nuclear stain

Fig. 2 Sperm Fluorescence in situ hybridization results for
chromosomes 18, X and Y. Snip image of the cells in white
(cropped). Composite image of channels acquired for each
of the four signals: SpectrumAqua (18), SpectrumGreen (X),
SpectrumOrange (Y) and the nuclear stain
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Conclusions
Aneuploidy is an excellent candidate as an evidence-
based biomarker for reproductive toxicants and carcino-
gens. This condition is a cellular hallmark of all cancerous
and precancerous lesions across a spectrum of cell types,
and in sperm specifically, it is associated with infertility,
miscarriages, and congenital abnormalities. Hence, sperm
aneuploidy is of particular interest because this condition
is associated with both increased risk of cancer and repro-
ductive toxicity. Assessment of sperm aneuploidy induced
by exposure to chemicals in both experimental models
and epidemiological studies has proven effective and pre-
dictive of the risk to humans: of seven substances known
to affect sperm genetic integrity [116], six are known or
suspected carcinogens [125]. In light of these findings and
considering that with the advent of automated chromo-
some counters and Laser Scanning Microscopy, sperm an-
euploidy assessment has become much faster and reliable,
it should be included to extend the evaluation of sperm
aneuploidy in chemical hazard and risk assessment. As-
sessment of aneuploidy in sperm germinal cells should be
integrated with current aneuploidy and chromosome
imbalance assessments currently in place for somatic cells
(such as comet and micronuclei assessments of peripheral
lymphocytes) [156]. Assessments in both somatic and
germ cells are needed to ensure that a comprehensive
evaluation of carcinogenicity and reproductive toxicity is
completed and one assessment cannot be substituted for
the other, as they each provide independent information
on chemical health impacts [157, 158].
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