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REVIEW ARTICLE

Second messenger/signal transduction pathways
in major mood disorders: moving from membrane
to mechanism of action, part I: major depressive
disorder

Mark J. Niciu,1* Dawn F. Ionescu,1 Daniel C. Mathews,1 Erica M. Richards,1 and
Carlos A. Zarate Jr.1,2

1 National Institutes of Health (NIH)/National Institute of Mental Health (NIMH), Experimental Therapeutics and Pathophysiology Branch (ETPB),
Intramural Research Program, Bethesda, Maryland, USA
2 Psychiatry and Behavioral Sciences, The George Washington University

The etiopathogenesis and treatment of major mood disorders have historically focused on modulation of monoaminergic
(serotonin, norepinephrine, dopamine) and amino acid [g-aminobutyric acid (GABA), glutamate] receptors at the plasma
membrane. Although the activation and inhibition of these receptors acutely alter local neurotransmitter levels, their
neuropsychiatric effects are not immediately observed. This time lag implicates intracellular neuroplasticity as primary
in the mechanism of action of antidepressants and mood stabilizers. The modulation of intracellular second messenger/
signal transduction cascades affects neurotrophic pathways that are both necessary and sufficient for monoaminergic
and amino acid–based treatments. In this review, we will discuss the evidence in support of intracellular mediators in
the pathophysiology and treatment of preclinical models of despair and major depressive disorder (MDD).
More specifically, we will focus on the following pathways: cAMP/PKA/CREB, neurotrophin-mediated (MAPK and
others), p11, Wnt/Fz/Dvl/GSK3b, and NFkB/DFosB. We will also discuss recent discoveries with rapidly acting
antidepressants, which activate the mammalian target of rapamycin (mTOR) and release of inhibition on local
translation via elongation factor stimulation. Throughout this discourse, we will highlight potential intracellular targets
for therapeutic intervention. Finally, future clinical implications are discussed.
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Clinical Implications

> Preclinical models of despair and clinical samples of
major depressive disorder (MDD) reveal abnormalities
in intracellular second messenger/signal trans-
duction cascades. Some of these cascades include
the following: cAMP/PKA/CREB, neurotrophin-
mediated (MAPK and others), p11, Wnt/Fz/Dvl/
GSK3(beta), and NF-(kappa)B/(delta)fobs.

> Deficiencies in intracellular second messenger/
signal transduction pathways reverse in response to

successful treatment with traditional (monoaminergic)
antidepressants.

> The rapidly-acting antidepressant ketamine induce
changes in alternative intracellular cascades, e.g.
mTOR activation and release of translational
inhibition, in dendritic spines. These cascades are
believed to be stimulated through acute antagonism
of NMDA receptor and a synaptic glutamate surge.

> Intracellular second messenger/signal transduction
abnormalities and reversal with successful treatment
may serve as nosologica endophenotypes and
biomarkers of response, respectively, to improve diag-
nosis and facilitate antidepressant drug development
among the heterogeneity inherent in MDD.

Introduction

The etiopathogenesis and treatment of the major
mood disorders, major depressive disorder (MDD) and
bipolar disorder (BD), have historically focused on the
manipulation of monoamingergic (serotonin, norepine-
phrine, dopamine) and amino acid (g-aminobutyric acid,
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glutamate) neurotransmitters via the activation or
inhibition of plasma membrane receptors. Albeit
there are acute changes in local neurotransmitter levels
in brain regions implicated in the pathophysiology
of depression (cortex, hippocampus), antidepressant
effects often require weeks to months. As a result, the
‘‘neurotransmitter imbalance’’ hypothesis of depres-
sion is at best incomplete. As will be displayed
below, these medications ultimately elicit their effects
through the activation/inhibition of intracellular signal
transduction cascades. Additionally, more direct target-
ing of salient second messenger/signal transduction
intermediates may provide more rapid and robust acting
antidepressant effects than our cadre of currently
available antidepressants. Also, by directly targeting
these mediators, some off-target adverse events, eg,
increasing serotonin levels in the gastronintestinal tract
leading to dyspepsia or diarrhea, may be avoided.

In this first of two articles, we will review
intracellular-mediated neuroplasticity in the patho-
physiology of preclinical models of depressive-like
behavior and MDD. Throughout, we will discuss
progress-to-date on pathway manipulation in treat-
ment, and at the end we will offer exciting areas for
future pathophysiological studies and experimental
therapeutics targeted at these intracellular neuromo-
dulatory cascades.

Intracellular Second Messenger/Signal
Transduction Cascades

cAMP/PKA/CREB

As mentioned, the delayed efficacy of monoaminergic
antidepressants suggests a mechanism of action that is
not simply explained by a restoration of a ‘‘chemical
imbalance’’ via reuptake inhibition. As early as the
1980s, several preclinical investigators examined the
vital role of intracellular second messenger/signal
transduction cascades in the pathophysiology and
treatment of depression. This examination was led by
the discovery that antidepressants elicit their intracellular
effects through canonical second messenger systems.
Elevated synaptic levels of serotonin and norepinephrine
activate cognate postsynaptic seven-transmembrane
G-protein coupled receptors. Norepinephrine-induced
b1AR and b2AR and serotonin-induced 5-HT4, 5-HT6,
and 5-HT7 receptor activation are predominantly impli-
cated (Figure 1).1,2 The intracellular domain of G-protein
coupled receptors interacts with Gs/i, which, through
their a subunit, stimulates/inhibits adenylyl cyclase
(AC). AC converts ATP-to-cAMP, which activates
protein kinase A (PKA).

AC activity is increased with both chronic antidepres-
sant treatment3 and electroconvulsive seizures (ECS).4

PKA phosphorylates downstream effector proteins
involved in cytoskeletal reorganization and transcription.
Standard antidepressants also increase PKA activity in
fractionated rat necortex.4,5 The cAMP-response element
binding (CREB) protein is the major transcription factor
responsible for neurotrophic/protective mRNA trans-
cription in this cascade. Like PKA, chronic antidepres-
sants increase CREB mRNA and protein levels in the
rat hippocampus.6 This increases expression of brain-
derived neurotrophic factor (BDNF), especially in the
hippocampal dentate gyrus.7 Transgenic CREB over-
expression in the hippocampus has antidepressant-like
effects in rodent models of despair, and phospho-CREB
(the activated isoform) stimulates CRE-responsive gene
expression with chronic antidepressant treatment.8

Due to aberrancies corrected by standard antidepres-
sants, phosphodiesterase (PDE) dysfunction has been
investigated in MDD. There are numerous PDE isoforms
that have variable specificity for cAMP and cGMP;
PDE4 is a brain-specific, cAMP-selective isoform that has
been the most extensively studied in depression.9

As displayed by [11C]-rolipram positron emission
tomography (PET), PDE4 levels are globally decreased
(about 20% reduction in MDD).10 As a result, PDE
inhibitors have been proposed as rational therapeutic
targets. An inhibitor of PDE4, (RS)-4-[3-(cyclopentyloxy)-
4-methoxy-phenyl]-2-pyrrolidin-2-one (rolipram), has
antidepressant effects in both MDD11 and rodent models
of despair.12,13 Our group is currently studying changes
in PDE4 levels after a treatment course with the selective
serotonin reuptake inhibitor (SSRI) citalopram as a
potential biomarker of treatment response (Clinical-
Trials.gov identifier: NCT00369798). Even though there
have been no additional trials with rolipram for two
decades due to severe nausea, several pharmaceutical
companies have subtype-specific, better-tolerated PDE
inhibitors in their armamentarium for potential testing as
antidepressants.

Neurotrophins

Centrally acting neurotrophins bind cognate receptors
and intracellularly activate their tyrosine kinase domain,
which induces autophosphorylation and recruits adap-
ter proteins (Figure 1). In one of the most well-studied
intracellular cascades in neuroscience, BDNF binds to
TrkB, which activates the following three cascades:
(1) extracellular regulated kinase (ERK)/mitogen-
activated protein kinase (MAPK), (2) phospholipase
Cg(PLCg)/inositol triphosphate (IP3), and (3) phospha-
tidylinositol-3 kinase (PI3 K) (as shown in Figure 1,
except the PLCg/IP3 cascade). In the ERK/MAPK
cascade, TrkB autoactivation recruits several adapter
proteins: Shc, Grb2, and Sos. Sos is a guanine nucleotide
exchange factor that converts GDP into the more
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energetically rich GTP. This sequentially activates Ras
and Raf, the first protein kinase in this cascade. Like
PKA, the activation of ERK/MAPK stimulates the
transcription of target genes responsible for cytoskeletal
rearrangement, neurotransmitter secretion, reuptake, etc.

The most extensively studied neurotrophin in depres-
sion is BDNF (reviewed by Tanis and Duman14). In
brief, multiple stress-induction paradigms decrease
hippocampal BDNF expression and cause depression-
like behaviors.15 Antidepressant medications and
electroconvulsive seizures (ECS) restore BDNF mRNA
levels in the frontal cortex and hippocampus.16,17

Exogenous administration of BDNF into the midbrain18

and hippocampus19 also has antidepressant-like effects.
Conditional BDNF knockout in the mouse forebrain
impairs the antidepressant effects of desipramine on
the forced swim test (FST).20 As a result, CNS
BDNF expression is both necessary (based on inducible
knockout experiments) and sufficient (from exogenous
administration experiments) for antidepressant efficacy.

Vascular endothelial growth factor (VEGF) is another
neurotrophin that has been investigated in depression.
Stress decreases hippocampal VEGF levels.21 ECS
restores VEGF expression and intracellular flux through
its cognate receptor, Flk-1 (VEGFR2), via the prolifera-
tion of neural stem cells in the dentate gyrus22 and

Figure 1. Canonical signal transduction cascades in preclinical models of despair and major depressive disorder. On the left side of
the figure, monoamine neurotransmitter binding to cognate receptors recruits G protein adapters to their intracellular C-terminal
tail. This activates (Gs)/inhibits (Gi) the cAMP/PKA/CREB cascade. Adenylyl cyclase converts ATP-to-cAMP, which stimulates
protein kinase A to phosphorylate CREB. Phospho-CREB translocates to the nucleus to stimulate transcription of target genes
involved in neuroprotection, neurotransmission, and cytoskeletal dynamics. On the right, neurotrophins bind to their cognate
receptor tyrosine kinases and induce the autophosphorylation of their intracellular domain(s). This recruits numerous adapter
proteins to the plasma membrane and stimulates protein–protein interactions that culminate in the activation of Raf, a protein
kinase. Raf activates the small molecule Ras to induce mitogen-activated protein kinase (MAPK). Like the cAMP/PKA/CREB
cascade, the MAPK/ERK pathway culminates in nuclear translocation of transcription factors (including CREB) to the nucleus.
There is also cross-talk between these two cascades (as depicted in the middle of the figure) via phosphoinosotides leading to Akt
activation. Akt phosphorylates GSK-3b, which dissociates it from Axin and APC (‘‘degradation complex’’). This stabilizes b-catenin
and facilitates its nuclear translocation. Please refer to the accompanying text for a discussion of intracellular second messenger/
signal transduction aberrations in depression, normalizing responses with antidepressants, and experimental targets for future drug
development. bAR, beta-adrenergic receptor; 5-HT, 5-hydroxytryptamine (serotonin); DR, dopamine receptor; Trk, tyrosine kinase;
NT, neurotrophin; Flk [VEGF (vascular endothelial growth factor) receptor], fetal liver kinase; AC, adenylyl cyclase; ATP, adenosine
triphosphate; cAMP, cyclic adenosine monophosphate; PDE, phosphodiesterase; CREB, cAMP-response element binding protein;
LEF/TCF, lymphoid enhancer factor/T-cell factor; PP2A, protein phosphatase 2A; b-Arr, beta-arrestin; GSK-3b, glycogen synthase
kinase-3 beta; APC, adenosis polyposis coli; b-Cat, beta-catenin; SHC, Src homology-2 domain containing (protein); Grb2, growth
factor receptor-bound (protein) 2; Sos, son of sevenless; Ras, rat sarcoma; GTP, guanine triphosphate; GDP, guanine diphosphate;
MAPKK, mitogen-activated protein kinase kinase; ERK, extracellular-regulated kinase.
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recruitment of constituents of the mTORC1 signaling
pathway.23 VEGF/Flk-1 signaling is also essential
for the antidepressant effects of the SSRI fluoxetine.24

Next, exercise-induced alleviation of depression-like
symptoms in rodents also activates VEGF/Flk-1.23 In
a rodent transgenic system (upregulation of cAMP
through an Aplysia Gs-coupled receptor), VEGF was
necessary for an antidepressant-like effect in several
stress-induction paradigms.25 In clinical studies, low
plasma VEGF levels have been observed in suicide
completers,26 and the antidepressant effects of total
sleep deprivation coincide with increased plasma levels
of VEGF.27 In a combined cohort of subjects in a current
major depressive episode (both unipolar and bipolar
depression), higher pretreatment VEGF levels trended
in antidepressant responders versus nonresponders
(p 5 0.055).28 Peripheral VEGF levels also remained
elevated up to 1 month after a successful course of
ECT.29 On a genetic level, the VEGF C/A polymorph-
ism is associated with treatment-resistant depression
(TRD), as the CC genotype is more common in ECT-
treated patients than in controls (31.1% and 18.7%,
respectively).30 However, another pharmacogenetic
study revealed no association of seven different VEGF
polymorphisms and antidepressant response.31

Insulin-like growth factor-1 (IGF-1) has also been
studied in depression. IGF-1 is produced by neuroen-
docrine cells in response to circulating hormones,
especially growth hormone (GH) and insulin, and has
potent mitogenic effects.32 Although initial clinical reports
demonstrated increased IGF-1 levels in depressed
patients,33,34 these investigations only examined peri-
pheral levels (which may not accurately reflect
centrally acting IGF-1) and did not discern between free
and bound IGF-1.35 As a result, several preclinical
research groups have clarified the role of centrally
acting IGF-1 and its inhibition. IGF-1 knockdown in
CA1 hippocampal pyramidal neurons has depresso-
genic effects.36 Intracerebroventricular administration
of IGF-1 and a non-selective IGF binding protein (which
sequesters IGF-1 into a biologically inert complex)
inhibitor have antidepressant and anxiolytic-like effects
in stress induction paradigms.37 Central IGF-1 also
decreases expression of proinflammatory cytokines,
which may mitigate neuroinflammatory cascades that
are critical in depression onset and/or maintenance.38,39

Peripheral administration of an IGF-1 antibody blocks the
antidepressant effects of exercise in a murine model of
chronic unpredictable stress.40 Back in the clinic, anti-
depressant treatment increased low CSF levels of IGF-141;
as a result, exogenous immediately acting (intranasal)
IGF-1 is being investigated for the treatment of MDD.42

Due to the discovery of decreased glial cell numbers
in rodent models of despair and MDD,43 several
groups have investigated a putative role for glial-

derived neurotrophic factor (GDNF) in depression.
MDD patients display an age-dependent decrease in
peripheral GDNF levels,44,45 which increases in
response to treatment46,47 and normalizes during
remission.48 In contrast, in a postmortem sample of
recurrent depression, increased GDNF levels in par-
ietal cortex were evident. Finally, in a study of rat
glioma cells, antidepressant-induced GDNF expres-
sion/secretion was mediated by b-arrestin-1/CREB
transcription complex formation,49 and GDNF epigenetic
regulation (promoter methylation and histone modifica-
tion) had adaptive effects in stressed mice.50

Other centrally expressed neurotrophins, eg, nerve
growth factor (NGF) and neurotrophin-3 (NT-3) and
their cognate receptors TrkA, TrkC and p75NTR, are
also under investigation in preclinical/clinical studies.

p11

p11 was initially found in a yeast two-hybrid screen as
a 5-HT1B and 5-HT4 interactor.51 p11 mRNA and 5-HT1B

receptor transcripts co-express in several brain areas
salient for depression.52 p11 mRNA was compared
in helpless H/Rouen mice (a genetic model of
depression) versus non-helpless NH/Rouen mice,
and, at baseline, p11 mRNA levels were decreased in
the forebrain in the helpless H/Rouen mice.51 The
antidepressants imipramine and tranylcypromine as
well as ECS increase neocortical p11 mRNA levels.51

p11 knockout mice display biochemical, electrophy-
siological, and behavioral responses consistent with
depression.51 Furthermore, the antidepressant effects
of imipramine in p112/2 mice were reduced in these
mice, and, when exposed to tail suspension and FST,
they were more resistant to the antidepressant effects
of exogenous BDNF.53 The transgenic overexpression
of p11, on the other hand, increases resiliency to
exogenous stress. BDNF increases p11 expression in a
trkB and MAPK-dependent manner.53 Therefore, p11
is both necessary in the pathogenesis and sufficient for
reversal of depressive behaviors.

The expression of p11 mRNA has also been examined
in depressed suicide completers, which revealed down-
regulation in the anterior cingulate cortex relative to
non-depressed controls.52 Prefrontal p11 mRNA is also
decreased in suicide completers relative to postmortem
controls.54 Peripheral p11 mRNA levels are also
decreased in suicidal attempters with comorbid MDD
and posttraumatic stress disorder (PTSD) relative to non-
attempters54 (but increased relative to PTSD alone and
healthy volunteers in another sample55).

In non-human primates, chronic treatment with
fluoxetine significantly increased p11 in peripheral
mononuclear cells temporally consistent with antide-
pressant onset (unpublished personal communication
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from R. Innis, MD, PhD, NIMH). To translate these
findings into humans, our group is presently investi-
gating if peripheral p11 levels increase in response to
successful SSRI treatment as a potentially biologically
salient biomarker of treatment response (Clinical-
Trials.gov identifier: NCT00697268).

Wnt/Fz/Dvl/GSK-3b

The Wnt/frizzled/disheveled/glycogen synthase
kinase-3 beta cascade has been studied in the pathophy-
siology and therapeutics of depression (Figure 2). (Of
note, GSK-3b can also be activated by PI3 K and Akt; for
a review, see Voleti and Duman.)56 In the canonical
signal transduction cascade, Wnt binding to Fz recruits a
low-density lipoprotein receptor–related protein (LRP)5/
6 to the plasma membrane, which interacts with the
scaffolding protein disheveled. Disheveled mediates
GSK-3b phosphorylation, which inactivates it. This
releases b-catenin from the axin-adenosis polyposis

coli-GSK-3b ‘‘destruction complex’’ for nuclear transloca-
tion.57 Nuclear b-catenin interacts with the transcription
factor T-cell factor/lymphoid enhancer factor (TCF/LEF)
to express Wnt-responsive genes.

The Wnt/Fz/Dvl/GSK-3b cascade has been impli-
cated in neuromodulation, especially synapse formation,
neurotransmission, and cytoskeletal reorganization.58

The expression of an endogenous Wnt inhibitor,
Dickkopf-1 (Dkk-1), is increased with mild restraint
stress and exogenous corticosterone administration.59

Mice lacking the Dkk1 transcriptional enhancer (Doubl-
ridge mice) are more resilient to chronic unpredictable
stress.59 Another isoform, Dickkopf-2 (Dkk2), is down-
regulated by chronic ECS.60 In this same study, a frizzled
receptor isoform, Fz6, was increased by chronic ECS60

and demonstrated that viral vector-mediated inhibition
of Fz6 was anxio- and depressogenic in numerous
behavioral paradigms.

GSK-3b is a serine-threonine kinase that has been
extensively investigated in psychotic and mood

ββ

β

β

Figure 2. Canonical Wnt/Fz/Dvl/GSK-3b signal transduction cascade. Wnts are secreted glycoproteins that are agonists for
Fz receptors. Fz receptor stimulation recruits LRP to the plasma membrane, which may be inhibited by cytosolic isoforms of
Dkk. The Wnt-Fz ligand-receptor complex recruits the scaffolding protein Dvl, which, in turn, stimulates Ca21-dependent and
Ca21-independent pathways. The Ca21 dependent pathway activates, among other mediators, PKC and CAMKII.
In addition to their more notorious effects on phosphoinositides, PKC crosstalk with the MAPK/ERK cascade promotes
neuromodulatory gene transcription (as depicted in Figure 1). CAMKII binds Ca21 and stimulates neuromodulatory gene
transcription through CREB. In the Ca21 independent arm, Dvl stimulates phosphorylation of GSK-3b (as described in
Figure 1) and facilitates dissociation of the b-catenin degradation complex and b-catenin mediated gene transcription.
Please refer to the accompanying text for a discussion of aberrations in depression, normalizing responses with successful
antidepressant treatment, and potential experimental targets for future investigation. Fz, frizzled; LRP, low-density
lipoprotein receptor-related protein; Dkk, Dickkopf; Dvl, disheveled; PKC, protein kinase C; MAPK, mitogen activated
protein kinase; ERK, extracellular-regulated kinase; CAMKII, calcium-calmodulin dependent protein kinase II; CREB,
cAMP-response element binding protein; LEF/TCF, lymphoid enhancer factor/T-cell factor; GSK-3b, glycogen synthase
kinase-3 beta; APC, adenosis polyposis coli; b-Cat, beta-catenin.
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disorders, especially bipolar disorder after the dis-
covery that lithium is a potent GSK-3b inhibitor.61 In
preclinical models of despair, the heterozygous dele-
tion of GSK-3b has antidepressant effects, and GSK-3
inhibitors (L803-mts and AR-A014418) mimicked these
genetic effects.60,62,63 The phosphorylation of GSK-3b

is increased by chronic administration of the anti-
depressants fluoxetine or venlafaxine.64 A depressive
phenotype was also observed with overexpression of
GSK3b in the NAcc, while a dominant-negative
GSK3b isoform promoted resiliency.65

Several other pathway intermediates are affected by
antidepressant therapy. Wnt2 was increased by several
antidepressants (including ECS) in a microarray study
of a rodent model of despair.64 Additionally, Wnt2
transgenic overexpression in the hippocampus was
sufficient to generate antidepressant-like effects.64

Wnt7b expression, on the other hand, was increased
by atomoxetine and ECS.64 Fz9 levels were upregu-
lated by the noradrenergic antidepressants atomox-
etine and venlafaxine but not by SSRIs.64 Blockade of a
disheveled isoform, Dvl2 [via both overexpression of a
dominant-negative isoform and intra-nucleus accum-
bens (NAcc) inhibitor infusion], decreased resiliency to
social defeat and other modalities for inducing
despair.65

To our knowledge, there have been no CNS-
penetrant small molecule modulators of the Wnt/Fz/
Dvl/GSK-3b pathway that have been tested in
psychiatric disorders. We seek translation of these
interesting rodent findings into the pathophysiology
and experimental therapeutics of MDD. Due to this
signal transduction/second messenger system’s invol-
vement in numerous cellular pathways, especially
mitogenesis, translational studies will need to pay
close attention to toxicity and side effect profiles.

NF-kB/DFosB

Nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB) is a transcription factor that has been
most extensively studied in immunology but also
plays a functional role in synaptic processes under-
lying learning and memory.66 After demonstrating its
function in instrumental and other forms of motivated
learning, several groups have investigated NF-kB
induction of DFosB, a truncated version of the
immediate-early transcription factor FosB, in rodent
models of despair. Lipopolysaccharide-exposed rodents
have a delayed increase in immunostaining for DFosB
that parallels the onset of increased immobility on the FST
and reduced sucrose consumption (a preclinical marker
of anhedonia).67 Serum response factor (SRF), another
transcription factor, decreases DFosB in the NAcc in
response to chronic social defeat.68 SRF levels are also

decreased in the NAcc in chronic social defeat stress in
mice and unipolar depression.68 In addition, genetic
deletion of NAcc SRF decreased resiliency to stress.68

Several studies have demonstrated that DFosB
expression correlates with antidepressant-like effects.69

In an elegant study using different mouse strains
genetically engineered to produce FosB 1/2 DFosB,
the DFosB haplotype (1/D) strain had increased
depressive-like behaviors relative to wild-type and
the double knock-in (D/D), which displayed less
anxiety in the open field test.70 DFosB expression
increased in multiple rat brain regions, eg, dorsal
raphe nucleus, frontal cortex, hippocampus, and
basolateral amygdala, with standard antidepressants
(sertraline and desipramine) and vagal nerve stimula-
tion (VNS).71 Interestingly, VNS appeared to have a
larger effect and affected some brain regions not
observed with traditional antidepressants (nucleus
tractus solitarius and locus ceruleus).71

mTOR

As the activation of intracellular neuromodulatory
cascades is critical for the mechanism of action of
standard antidepressants, several recent studies have
elucidated the mechanisms underlying the rapidly
acting antidepressant effects of glutamate-based
medications such as ketamine. Li et al.72 discerned
that the activation of mammalian target of rapamycin
(mTOR) was necessary for ketamine’s antidepressant
effects (Figure 3). A case report in a single treatment-
resistant depressed patient revealed that intravenous
ketamine increased peripheral mTOR expression
on a time course that coincided with its rapid
antidepressant effects.73 Like ketamine, the proprietary
mGluR2/3 antagonist, LY341495, rapidly (within 1 h)
activated mTOR and downstream pathway constitu-
ents (p70S6K, 4E-BP1) and subsequently (24 h later)
increased levels of postsynaptic density proteins
(PSD-95, GluR1, synapsin I).74 These antidepressant
effects of LY341495 were reversed by the mTOR inhi-
bitor rapamycin.74

eEF2K/CAMKIII

Finally, the release of inhibition on local translation in
dendritic spines has emerged as an exciting intracel-
lular target of ketamine. Autry et al.75 reported that
subanesthetic doses of ketamine released inhibition of
translation by deactivating eukaryotic elongation
factor 2 kinase (eEF2K)/calcium-calmodulin protein
kinase type III (CAMKIII) (Figure 3). The ensuing
dephosphorylation of eEF2 removes tonic inhibition on
BDNF translation in the hippocampus, thereby increas-
ing BDNF levels and concomitant TrkB receptor activa-
tion. The deactivation of eEF2K and stimulation of eEF2
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(thereby increasing central BDNF levels) has emerged as
a novel rational therapeutic target in MDD.76

Conclusions

In this article, we have reviewed the evidence for
intracellular second messenger/signal transduction
cascades in preclinical models of despair and MDD.
Monoamine reuptake inhibition by traditional anti-
depressants occurs immediately, but the behavioral
effects take much longer, which implicates intracellular
processes in their mechanism of action. Traditional
monoaminergic antidepressants indirectly stimulate
multiple intracellular cascades, and this may ulti-
mately dilute their antidepressant efficacy on the
neural circuitry that is involved in depression via
off-target stimulation/inhibition. In addition, these

medications have proven inadequate in real world
effectiveness trials such as STAR*D77 and CO-MED.78

This should come as no surprise, as only 5–10% of CNS
neurons use monoamines as their primarily neuro-
transmitter, while .50% use glutamate. Glutamate-
based antidepressants are more rapidly acting and
have larger effect sizes in clinical trials.79,80 Two of the
most promising candidates for future drug development
based on preclinical studies with ketamine are mTOR
and eEF2K/eEF2. As reviewed, both of these molecules
are critical in central BDNF signaling (mTOR possibly
downstream of BDNF and eEF2K/eEF2 in local BDNF
translation). As promising as this seems, we must remain
vigilant for toxicity/adverse events, as (1) mTOR is a
protooncogene and overactive in autoimmune disorders
(where its overactivity may be suppressed clinically with
rapamycin), and (2) chronic stimulation of eEF2 may

Figure 3. Signal transduction cascades activated by the rapidly-acting antidepressant ketamine. Based on preliminary
preclinical and unpublished clinical data, postsynaptic NMDA receptor antagonism incites a rapid presynaptic
glutamate surge. Glutamate then stimulates AMPA receptors. AMPA potentiation increases Na1 to induce the
phosphorylation of mTOR, a central signaling hub that has multiple downstream effectors. Activated mTOR then
phosphorylates p70S6K. Phospho-p70S6K can directly stimulate translation of downstream postsynaptic targets. Stimulated
mTOR also inhibits 4E-BP, thereby relieving translational inhibition. NMDA receptor activation also inhibits eEF2K, which
increases levels of dephosphorylated eEF2. Dephosphorylated eEF2 relieves inhibition of BDNF translation in dendritic spines.
This multitiered translational activation increases the expression of neuromodulatory proteins involved in, among other
effects, postsynaptic scaffolding, neurotransmitter dynamics, and dendritic spine morphogenesis (from synaptically
unstable filipoda to synaptically dynamic mushroom-shaped spines, which form the morphological substrate for diverse
neuropsychiatric responses: learning, memory, and, most importantly here, antidepressant-like behavioral effects). Through
its release of inhibition on local translation, ketamine also increases excitatory postsynaptic potentials in prefrontal cortical
neurons. NMDA, N-methyl-D-aspartate; AMPA, 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid; mTOR,
mammalian target of rapamycin; 4E-BP, eukaryotic initiation factor 4E-binding protein; eEF2, eukaryotic elongation factor 2;
eEF2K, eEF2 kinase; FKBP12, FK506-binding protein 12; LST8, mammalian lethal with sec 13; PI3K, phosphoinositide-3 kinase;
mTORC1, mTOR complex 1; PRAS40, proline-rich Akt/PKB substrate of 40 kD; p70S6K, p70 S6 kinase. T 5 threonine,
S 5 serine (with trailing number denoting the phosphorylated residue).
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lead to excessive translation of off-target proteins. (Of
note, we suggest that monoaminergic antidepressants
have not been associated with an increased risk of cancer
because their biological effects are more indirect and
likely less potent on these intracellular cascades.)

The mood disorders field is sorely in need of
biologically salient measures to improve our existing
nosology and monitor treatment response, which, at
present, is based only on patient report and clinical
impression. Biologically informed therapeutics are routi-
nely used in other fields of medicine such as cardiology
and oncology, but, unfortunately, they remain elusive in
psychiatry. Reliable measures of intracellular processes
involved in depression may assist in developing a more
accurate nosology among the heterogeneity inherent in
the clinical diagnosis of MDD, eg, those patients who
have underactive mTOR or eEF2 activity may have a
‘‘glutamate-based depression’’81 and may benefit from
glutamate-based therapies. Next, the development of
peripheral measures of intracellular events may allow us
to assess a more reliable and quantitative baseline and
treatment response better than our current approach, eg,
assessing baseline mTOR and eEF2K/eEF2 activity and
monitoring change in activity with treatment.

In conclusion, we have garnered an adequate
understanding of intracellular second messenger/
signal transduction cascades in preclinical models of
depression and MDD, and, in due time, these findings
will likely be translated into the clinic in novel
therapies and nosological biomarkers.
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