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Direct measurement of Bisphenol A (BPA),
BPA glucuronide and BPA sulfate in a
diverse and low-income population of
pregnant women reveals high exposure,
with potential implications for previous
exposure estimates: a cross-sectional study
Roy R. Gerona1, Janet Pan1, Ami R. Zota1,2, Jackie M. Schwartz1, Matthew Friesen1, Julia A. Taylor4,
Patricia A. Hunt3 and Tracey J. Woodruff1*

Abstract

Background: Bisphenol A (BPA) is a ubiquitous, endocrine-disrupting environmental contaminant that increases risk
of some adverse developmental effects. Thus, it is important to characterize BPA levels, metabolic fate and sources
of exposure in pregnant women.

Methods: We used an improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytic method
to directly and simultaneously measure unconjugated BPA (uBPA), BPA glucuronide and BPA sulfate in the urine of
a population of ethnically and racially diverse, and predominately low-income pregnant women (n = 112) in their
second trimester. We also administered a questionnaire on dietary and non-dietary sources of exposure to BPA.

Results: We found universal and high exposure to uBPA and its metabolites: median concentrations were 0.25,
4.67, and 0.31 μg/g creatinine for uBPA, BPA glucuronide, and BPA sulfate, respectively. The median Total BPA
(uBPA + BPA in glucuronide and sulfate forms) level was more than twice that measured in U.S. pregnant women in
NHANES 2005–2006, while 30 % of the women had Total BPA levels above the 95th percentile. On average, Total
BPA consisted of 71 % BPA in glucuronide form, 15 % BPA in sulfate form and 14 % uBPA, however the proportion
of BPA in sulfate form increased and the proportion of uBPA decreased with Total BPA levels. Occupational and
non-occupational contact with paper receipts was positively associated with BPA in conjugated (glucuronidated +
sulfated) form after adjustment for demographic characteristics. Recent consumption of foods and beverages likely
to be contaminated with BPA was infrequent among participants and we did not observe any positive associations
with BPA analyte levels.
(Continued on next page)
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Conclusion: The high levels of BPA analytes found in our study population may be attributable to the low-income
status of the majority of participants and/or our direct analytic method, which yields a more complete evaluation of
BPA exposure. We observed near-universal exposure to BPA among pregnant women, as well as substantial
variability in BPA metabolic clearance, raising additional concerns for effects on fetal development. Our results are
consistent with studies showing thermal paper receipts to be an important source of exposure, point to the
difficulty pregnant women have avoiding BPA exposure on an individual level, and therefore underscore the need
for changes in BPA regulation and commerce.

Keywords: Bisphenol A, Pregnant women, Children’s environmental health, Exposure sources, Liquid
chromatography-tandem mass spectrometry (LC-MS/MS)

Background
Bisphenol A (BPA) is a high production volume chemical
with a broad range of applications, including resins that
line food and beverage cans and fermentation tanks, poly-
carbonate plastics, medical devices, cigarette filters and
toys [1–3]. BPA is also used as a developer in thermal
paper (used for receipts and tickets) and in printing ink,
and has been detected in both virgin and recycled
paper goods, such as food and beverage contact paper
(e.g., paper plates and napkins, cardboard boxes),
newspapers and paper currency [4–10]. The State of
California recently added BPA to its list of known de-
velopmental and reproductive toxicants: exposure to
BPA, particularly during pregnancy, is of public health
concern because BPA possesses a variety of hormone-
like actions, and animal studies have shown that in
utero exposure to BPA can alter the development of a
wide range of organ systems (e.g., brain, prostate,
mammary gland, lung, and reproductive tract) and ac-
celerate the onset of puberty [11–16]. Furthermore,
epidemiology studies have found associations between
BPA exposure and adverse reproductive health effects,
such as reduced semen quality, sperm DNA damage
[17–19] and oocyte maturity and normal fertilization
in women undergoing IVF [20].
BPA continues to be produced and used in consumer

products in large quantities (averaging 8 lb per capita in
the United States with a total of 2.3 billion pounds an-
nually [3, 21]), resulting in ubiquitous human exposure:
more than 90 % of the general and 96 % of the pregnant
U.S. population have measurable levels of Total BPA
(unconjugated BPA (uBPA) plus its primary conjugated
metabolites, BPA glucuronide and BPA sulfate) in their
urine [3, 22, 23]. Higher urinary levels of Total BPA have
been measured in lower socioeconomic status U.S.
women and children, and lower levels in U.S. Hispanic
women and children, suggesting BPA exposure varies by
race/ethnicity, sex and age [23–25].
Understanding sources of BPA exposure is instrumental

for identifying populations at greatest risk and for devising
strategies for reducing exposure. Studies measuring BPA

in food and paper products have found levels as high as
730 ng/g in food (e.g., canned green beans) [26], 26.6 ug/g
in food-contact paper [10] and 42.6 mg/g in thermal re-
ceipt paper [6]. Higher urinary concentrations of Total
BPA have been associated with cashier-related occupa-
tions in pregnant women [27] and the general population
[28, 29], with consumption of canned vegetables, ham-
burgers and soda in pregnant women [25], and with con-
sumption of soda and meals prepared outside the home in
the general U.S. population [30]. Smaller intervention
studies of non-pregnant populations have also identified
canned soup, plastic water bottles and handling thermal
paper receipts as potential important sources of exposure
[31–34]. Despite the importance of characterizing BPA ex-
posure during pregnancy and the higher Total BPA levels
reported in certain socioeconomic and racial/ethnic
groups [22, 24], there has been little research on exposure
levels and sources of exposure in ethnically and racially di-
verse and low-income groups of pregnant women [24].
Most biomonitoring studies to date have estimated pre-

natal exposure to Total BPA indirectly, using enzyme hy-
drolysis to cleave glucuronide and sulfate bonds with BPA,
then quantifying uBPA [35]. Due to limitations in process-
ing methodology (i.e., incomplete enzyme hydrolysis), this
indirect methodology may underestimate exposure levels.
In addition, emerging research points to the need for dir-
ect quantification of BPA glucuronide and BPA sulfate
concentrations when determining the health risks posed
by BPA, particularly to the developing fetus. First, though
not observed in one rodent study [36], in vitro studies
suggest that BPA glucuronide and BPA sulfate may be
deconjugated by β-Glucuronidase (highly active in the
placenta and fetal liver) or estrone sulfatase, respectively,
thus leading to deconjugation-conjugation cycling of BPA
[37, 38]. Second, recent science indicates that BPA glucu-
ronide may also be biologically active [39], and this possi-
bility for BPA sulfate has not been precluded.
In the current cross-sectional study, we employed a

more sensitive and accurate analytic technique to directly
and simultaneously measure uBPA, BPA glucuronide and
BPA sulfate in a low-income, ethnically and racially
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diverse population of pregnant women. We also adminis-
tered a comprehensive questionnaire to identify potential
sources of exposure to BPA.

Methods
Study population and recruitment
We recruited pregnant women in their second trimester
from the Women’s Options Center (WOC) at San Francisco
General Hospital (SFGH) in San Francisco, California. The
WOC is an academic-based outpatient clinic that per-
forms pregnancy terminations and serves communities
from Northern and Central California. We recruited preg-
nant women, 18 to 45 years of age, English- or Spanish-
speaking, and pregnancy gestation between 13 and
24 weeks. Because our study objectives were to under-
stand BPA exposure and exposure sources in healthy
pregnancies, patients seeking a pregnancy termination
due to fetal anomalies were excluded. We identified eli-
gible study participants by reviewing the patient’s medical
record only after she had 1) consulted with a trained
counselor for an elective second trimester pregnancy ter-
mination procedure and 2) consented to the procedure as
documentation of her intent to proceed with the elective
pregnancy termination. Study protocols were approved by
the University of California, San Francisco Committee on
Human Research. We recruited a total of 185 participants
between 2009 and 2011 and collected urine samples from
171. The integrity of 54 urine samples was potentially
compromised due to a freezer malfunction, so they were
not analyzed for BPA. Creatinine measurements were un-
available for 5 participants who were thus excluded, leav-
ing a total of 112 pregnant women in the final study
sample.

BPA exposure questionnaire and demographic data
To evaluate dietary and non-dietary sources of exposure,
we developed a BPA exposure questionnaire based on a
literature review of human exposure assessment studies
and measurements of BPA in various food and consumer
products [2–4, 40]. The survey instrument included 197
questions regarding: consumption of foods and bever-
ages that could be contaminated with BPA due to pack-
aging or preparation; occupational and non-occupational
contact with paper receipts; and knowledge and avoid-
ance of BPA. Specifically, we asked about consumption
of foods and beverages packaged in cans, cartons or
paper, or served on paper plates, napkins or cups, as well
as consumption of wine and beer. The survey captured
both short-term (i.e., consumed “today”, “yesterday”) as
well as long-term dietary consumption. Additional
demographic and medical information collected through
the questionnaire or medical record abstraction in-
cluded: maternal age, gestational age of the fetus, body
mass index (BMI), personal and combined household

income, educational attainment, insurance status, food
stamp assistance, smoking status during the past year
and race/ethnicity. Seven percent of our study sample
completed a self-administered questionnaire (n = 8) as
part of the field testing of the questionnaire, while the
remaining 93 % completed an interview-administered
questionnaire (both modalities were supported by pic-
tures and cue-cards). The BPA exposure questionnaire is
available upon request from the corresponding author.

Sample collection and laboratory analysis
A non-fasting spot urine sample was collected on the
day prior to the medical procedure (before any medical
interventions occurred) and after the participant com-
pleted the BPA exposure questionnaire. Urine samples
were stored on ice until they were aliquoted into 5 ml
polypropylene cryovials and then stored at −80 °C until
analysis. Urinary creatinine levels were measured by the
SFGH Clinical Chemistry Laboratory using the enzym-
atic creatinine method and the Siemens Advia 1800
autoanalyzer.
Direct analysis of BPA analytes was done by liquid

chromatography-tandem mass spectrometry (LC-MS/MS).
We measured uBPA, BPA glucuronide and BPA sulfate
simultaneously using Agilent LC 1260-AB Sciex 5500 with
electrospray ionization in the negative mode as previously
described [41]. Each analyte was monitored by multiple re-
action monitoring using two transitions and BPA-d16 as an
internal standard: uBPA, 227.012 – 133.100 and 227.0 –
212.1; BPA glucuronide, 402.9 – 112.9 and 402.9 – 226.9;
BPA sulfate, 306.9 – 227.0 and 306.9 – 212.1; and BPA-d16,
241.0 – 142.2 and 241.0 – 222.1. Each urine sample was
thawed and centrifuged at 3000 rpm for 10 min before it
was prepared for LC-MS/MS analysis by solid phase extrac-
tion (SPE) using Waters Oasis HLB cartridge (1 cm3). Each
SPE cartridge was washed with 5 column volumes of
methanol to eliminate its reported BPA contamination [41].
The cartridges were then activated with water before
500 μL of urine was loaded. The column was washed with
5 % methanol before each analyte was eluted by methanol.
The methanol eluates were evaporated under a stream of
nitrogen gas and reconstituted in 500 μL 10 % methanol
for column injection. A 25 μL aliquot of the extract was
used for each of the replicate injections of the sample.
Chromatographic separation of the analytes was achieved
by gradient elution using water with 0.05 % ammonium
acetate (pH= 7.8) as mobile phase A and methanol with
0.05 % ammonium acetate (pH = 7.8) as mobile phase B.
The elution gradient employed was: 0 – 0.5 min = 30 % B;
1 min = 75 % B; 4 min = 100 % B; 4 – 6 min = 100 % B; and
6.01 – 12 min = 30 % B. Quantification of each analyte was
done by isotope dilution method using BPA-d16 as an in-
ternal standard. During method development, we also
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measured for BPA disulfate, but did not find significant
levels in urine (data not shown).
We assessed the limit of detection (LOD) for each an-

alyte by running a series of calibration standards (0.01 –
100 ng/mL), established as the lowest concentration of
the analyte that gives a signal/noise (S/N) ratio of 3. We
established the limit of quantification (LOQ) as the low-
est concentration with S/N ratio of 10 while keeping the
linear regression coefficient of the standard curve ≥ 0.95.
The LODs for uBPA and BPA glucuronide were 0.05 ng/
mL while the LOD for BPA sulfate was 0.025 ng/mL.
The lower LOQ for all three analytes was 0.10 ng/mL.
Method recoveries for each analyte were reproducibly
high both within and between runs [41]. The range of re-
coveries obtained for uBPA, BPA glucuronide and BPA
sulfate were 90.5 – 96.0 %, 87.5 – 91.0 % and 92 – 97.5 %,
respectively. For each of the analytes, the recoveries were
observed at a narrow range ensuring that analytical vari-
ability would not contribute significantly to measured
levels of the analyte in the samples. The ranges of method
precision within run and between runs established for
uBPA, BPA glucuronide and BPA sulfate were 1.5 – 7.0 %
coefficient of variation (CV), 3.0 – 9.5 % CV and 2.4 –
7.5 % CV, respectively.
We also tested all equipment and supplies used in the

collection or storage of urine for their potential to con-
taminate urine specimens with BPA [41]. Specifically, we
simulated sample collection, extraction and analytical run
using synthetic human urine (UTAK Laboratories, Inc.).
All processes and equipment were found to be free of
BPA contamination (BPA < LOD in all field blank testing
materials).

Data analysis
We imputed samples below the LOD with LOD/√2 [23]
and all analyte concentrations were adjusted for creatin-
ine. In calculating Total BPA (the sum total concentra-
tion of all BPA analytes), it is necessary to account for
the higher mass of BPA glucuronide and BPA sulfate
compared to uBPA (due to the additional glucuronide
and sulfate conjugate groups, respectively). Accordingly,
we calculated two metrics – BPA in glucuronide form
and BPA in sulfate form – that adjusted for the add-
itional mass of the conjugate groups as follows: we
multiplied the concentration of BPA glucuronide by the
ratio of the molecular weight of BPA to that of BPA glu-
curonide (0.5645), and the concentration of BPA sulfate
by the ratio of the molecular weight of BPA to that of
BPA sulfate (0.7404). We summed uBPA, BPA in glucu-
ronide form and BPA in sulfate form to calculate Total
BPA and summed BPA in glucuronide form and BPA in
sulfate form to calculate BPA in conjugated form. In
addition to permitting a comparison of the relative levels
of each BPA analyte within a sample, BPA in glucuronide

form, BPA in sulfate form, BPA in conjugated form and
Total BPA are the best metrics for comparing concentra-
tions in this study to all previous studies that measured
BPA glucuronide and/or BPA sulfate using enzyme hy-
drolysis methods.
We calculated geometric mean (GM), geometric stand-

ard deviation (GSD), median, inter-quartile range (IQR)
and 95th percentile estimates for creatinine-adjusted and
unadjusted BPA analytes. Distributions of uBPA, BPA in
glucuronide form and BPA in sulfate form were highly
right skewed. Therefore we used non-parametric tests to
examine the correlation between BPA analytes as well as
their univariate association with demographic characteris-
tics and BPA exposure sources, and we used log-
transformed BPA analyte levels in all multivariable
analyses.
We aggregated data from the BPA exposure question-

naire to create 15 BPA exposure source variables that
represent how recently (e.g., today, yesterday, not in past
two days) a participant reported contact with each type
of potential BPA exposure source (e.g., contact with
paper receipts, consumption of canned and paper-
packaged foods) in order to evaluate our hypothesis that
recent exposure would be associated with higher levels
of BPA analytes. We also generated long-term dietary
exposure variables that represented the frequency and
quantity of items typically consumed per week. Partici-
pants who answered “don’t know” to any question on
the questionnaire were grouped with the “not-exposed”
category if they comprised less than 5 % of the study
sample. (The only question to which more than 5 % of
participants answered “don’t know” pertained to com-
bined household income; these 27 participants were
grouped with those who chose “do not want to answer.”)
In addition, only 4 participants reported consuming
canned foods on the day of urine collection; therefore
we grouped them with participants who reported eating
canned foods “yesterday.” Because the identical set of
BPA exposure source variables were associated with BPA
in glucuronide form and BPA in sulfate form in a univar-
iate context, we analyzed and report results for BPA in
conjugated form.
For multivariable analyses of the association between

log-transformed BPA analyte levels and BPA exposure
sources, adjusting for demographic characteristics, we
first identified demographic covariates associated with
log-transformed uBPA and BPA in conjugated form via
backwards stepwise regression (separate models were
constructed for uBPA and BPA in conjugated form).
Next, we estimated marginal geometric means (i.e.,
covariate-adjusted geometric means) of uBPA and BPA
in conjugated form, with the largest subgroup of
categorical variables serving as the baseline. Results were
consistent whether we adjusted for creatinine by
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including creatinine as a covariate in the model or by
using creatinine-adjusted log-transformed BPA analyte
levels as the outcome variable. Therefore, we present the
results of the latter approach so that crude and adjusted
geometric means can be compared. Linear regression as-
sumptions were checked for final models using normal-
quantile and residual versus fitted plots and Shapiro-Wilk
tests for normality of standardized residuals. We also per-
formed two sensitivity analyses by refitting final models
excluding: 1) 11 subjects with creatinine levels outside the
World Health Organization (WHO) inclusionary range
(30 – 300 mg/L) and 2) influential data points (|resid-
uals| ≥ 2.5) for that model. We set the level of statistical
significance at p < 0.10 for our smaller sample size. All
statistical analyses were conducted in Stata (version 12).
All BPA analyte levels presented are creatinine-adjusted
values unless otherwise specified (creatinine measure-
ments ranged from 15.42 to 357.07 mg/dL).

Results
All study participants had detectable concentrations of
uBPA, BPA glucuronide or BPA sulfate in their urine
(Table 1). Total BPA levels were right skewed – 38
(>30 %) participants had Total BPA levels ≥ 10 μg/g cre-
atinine, 20 (>17 %) had Total BPA levels ≥ 50 μg/g cre-
atinine and 15 (>13 %) had Total BPA levels ≥ 100 μg/g
creatinine – and highly variable, with a more than three
orders of magnitude range across study participants
(CV = 3.4). Concentrations of BPA in glucuronide form
were higher than other BPA forms in 85 % of urine

samples, whereas BPA in sulfate form was higher than
other BPA forms in 5 % of participants who also had
higher Total BPA levels (GM = 5.7 vs. 19.4 ng/g, Kruskall
Wallis p = 0.07). On average, Total BPA was comprised
of 71 % BPA in glucuronide form (standard deviation
(SD) 23 %, median 77 %), 15 % BPA in sulfate form (SD
18 %, median 8 %), and 14 % BPA (SD 22 %, median
4 %). However, the proportion of Total BPA in sulfate
form varied by race/ethnicity (whites 16 %, Latinas 12 %,
Asian/Pacific Islanders 10 % and Blacks 4 %, Kruskall
Wallis p = 0.0079) and increased with Total BPA levels
(Spearman rho (ρ) = 0.56, p < 0.0001), such that BPA in
sulfate form was 32 % of Total BPA in women in the top
quartile of Total BPA levels (Fig. 1). As Total BPA levels
increased, the proportion of BPA in glucuronide form
remained unchanged (p = 0.62) and the proportion of
BPA decreased (ρ = -0.68, p < 0.0001) (Fig. 1). Consistent
with these findings, we found that levels of BPA in glu-
curonide and sulfate form were highly correlated with
each other (ρ = 0.83, p < 0.0001) but not with uBPA
(Additional file 1), while women with Total BPA levels
above the GM had higher levels of BPA in glucuronide
and sulfate forms (p < 0.0001) but similar levels of uBPA
compared to women with Total BPA levels below the
GM (Additional file 2).
Our study sample was ethnically and racially diverse

and primarily low income (Table 2). African Americans
were the most represented and Latina and white women
each comprised approximately 25 % of the sample.
Sixty-five percent of participants had a 12th grade or

Table 1 Urinary levels of BPA analytes in second trimester pregnant women, Northern and Central California, 2009–2011 (n = 112)

Percentile

n (%) >LODa GM (GSD) 5th 25th 50th 75th 95th Range

Creatinine-adjusted (μg/g)

Total BPAb 112 (100) 6.16 (1.77) 0.61 1.69 3.97 13.87 196.65 0.37 - 1,347.50

BPA 98 (88) 0.21 (1.39) <LOD 0.08 0.25 0.55 1.61 <LOD - 16.96

BPA glucuronide 111 (99) 6.77 (1.90) 0.60 2.16 4.67 15.31 249.76 <LOD - 2,019.33

BPA in glucuronide formc 111 (99) 3.82 (1.90) 0.34 1.22 2.64 8.64 140.99 <LOD - 1,139.91

BPA sulfate 84 (75) 0.62 (2.73) <LOD 0.05 0.42 3.54 80.35 <LOD - 279.77

BPA in sulfate formc 84 (75) 0.46 (2.73) <LOD 0.04 0.31 2.62 59.49 <LOD - 207.14

Unadjusted (ng/mL)

Total BPAb 112 (100) 7.69 (1.74) 0.88 2.28 4.61 19.49 250.06 0.35 - 539.63

BPA 98 (88) 0.26 (1.20) <LOD 0.10 0.29 0.66 1.51 <LOD - 4.41

BPA glucuronide 111 (99) 8.45 (1.93) 0.57 2.49 6.74 21.08 359.41 <LOD - 683.42

BPA in glucuronide formc 111 (99) 4.77 (1.93) 0.32 1.41 3.80 11.90 202.89 <LOD - 385.79

BPA sulfate 84 (75) 0.77 (2.71) 0.04 0.04 0.49 5.97 109.24 0.04 - 271.16

BPA in sulfate formc 84 (75) 0.57 (2.71) 0.03 0.03 0.37 4.42 80.88 0.03 - 200.77

GM geometric mean, GSD geometric standard deviation, LOD limit of detection
aLOD = 0.05 ng/mL for BPA and BPA glucuronide and LOD = 0.025 ng/mL for BPA sulfate
bTotal BPA = BPA + BPA in glucuronide form + BPA in sulfate form
cBPA in glucuronide form = BPA glucuronide*0.5614. BPA in sulfate form = BPA sulfate*0.7404. The factors 0.5614 and 0.7404 are the ratios of the molecular
weight of BPA to the molecular weights of BPA glucuronide and BPA sulfate, respectively
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lower education, 41 % reported a combined annual
household income of less than $20,000 (only 12 subjects
reported household incomes of $40,000 or more), and
nearly all women received public health insurance. BPA
in conjugated form was positively associated with educa-
tion and nulliparity in a univariate context, and with
education and race/ethnicity in a multivariable context.
uBPA was positively associated with education and nega-
tively associated with BMI in both a univariate and mul-
tivariable context.
About half of participants reported touching or hold-

ing paper receipts on the day of urine collection and
21 % held receipt-related occupations (Table 3). In con-
trast, only a small percentage (0–26 %) reported con-
suming one or more of the five potential dietary sources
of BPA on the day of urine collection, which is consist-
ent with the relatively low frequency (median 0.5 – 4.75
times per week) with which participants reported con-
suming these foods and beverages on a regular basis
(Additional file 3).
In the multivariable analysis, BPA in conjugated form

was significantly associated with employment in a job
that involves dermal contact with paper receipts: After
adjustment for education and race/ethnicity, participants
who reported handling credit card or store receipts as
part of their job had more than 2-fold higher GM con-
centrations of BPA in conjugated form (8.98 μg/g) com-
pared to those who did not (4.21 μg/g, p < 0.10).

Consistent with this finding, we observed a significant
positive trend between recent non-occupational contact
with paper receipts and levels of BPA in conjugated form
(non-parametric test for trend, p < 0.05) and approxi-
mately 2-fold higher GM concentrations of BPA in con-
jugated form in women reporting holding or touching
paper receipts the day of urine collection compared to
those who did so on the day before (p = 0.08); however,
this latter finding was no longer statistically significant
when influential points were removed from the regres-
sion model. In a separate analysis to explore these find-
ings, we observed a significant positive correlation
between BPA in conjugated form and the number of
times a participant reported touching receipts in the past
two days (ρ = 0.29, p = 0.002). Regarding other potential
BPA exposure sources, with the exception of food pro-
cessor use (positive association) and wine consumption
(negative association), we did not observe any statically
significant associations with BPA in conjugated form in
a multivariable context.
Levels of uBPA were positively associated with

education and negatively with BMI in our multivari-
able analysis. However, uBPA was not associated
with any BPA exposure source variables in a manner
consistent with our hypothesis of recent exposure
leading to higher urinary uBPA analyte levels
(Table 3). Levels of uBPA were lower in women who
purchased more than half of their meals in both

Fig. 1 Composition of Urinary Total BPA in Second Trimester Pregnant Women, by quartiles of Creatinine-Adjusted Total BPA Levels, Northern
and Central California, 2009–2011 (n = 112). Notes: 1. Total BPA = BPA + BPA in glucuronide form + BPA in sulfate form. 2. BPA in glucuronide form
= BPA glucuronide*0.5614. BPA in sulfate form = BPA sulfate*0.7404. The factors 0.5614 and 0.7404 are the ratios of the molecular weight of BPA
to the molecular weights of BPA glucuronide and BPA sulfate, respectively
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univariate and multivariable analyses, however this
association was not significant in the sensitivity ana-
lysis models (p = 0.6 and p = 0.35 when influential
points and creatinine levels outside WHO range
were excluded, respectively).
Women who reported knowledge of BPA or taking ac-

tion to avoid BPA had similar levels of uBPA and BPA in

conjugated form as women who did not (Table 3).
Lastly, long-term dietary exposure scores were not asso-
ciated with concentrations of either uBPA or BPA in
conjugated form (Additional file 4).
To confirm the high levels of BPA glucuronide we ob-

served, we sent six urine samples with high (n = 3) and
low (n = 3) levels of BPA glucuronide to the University

Table 2 Characteristics and creatinine-adjusted urinary BPA concentrations of second trimester pregnant women from Northern and
Central California, 2009–2011 (n=112)

n (%) BPA in Conjugated
Forma (μg/g)
GM (95 % CI)

BPA (μg/g)
GM (95 % CI)

Ethnicity

Latina 26 (23) 6.52 (2.94, 14.50) 0.17 (0.10, 0.30)

Black 41 (37) 2.71 (1.68, 4.38) 0.23 (0.14, 0.37)

White 27 (24) 8.60 (3.39, 21.82) 0.27 (0.16, 0.46)

Asian/PI/Unknown 18 (16) 4.97 (1.72, 14.33) 0.15 (0.08, 0.28)

Smoking Statusb

Non-smoker 64 (60) 5.48 (3.37, 8.90) 0.20 (0.14, 0.28)

Current smoker 43 (40) 4.02 (2.10, 7.69) 0.21 (0.14, 0.30)

Educationb

11th Grade and below 19 (18) 2.26 (0.96, 5.36)** 0.11 (0.06, 0.22)*

12th Grade/GED 51 (47) 3.74 (2.20, 6.37) 0.23 (0.15, 0.35)

College or above 38 (35) 10.45 (5.46, 20.00) 0.25 (0.17, 0.38)

Food-stamp Status

No 52 (46) 6.46 (3.82, 10.93) 0.23 (0.15, 0.34)

Yes 60 (54) 3.77 (2.22, 6.39) 0.20 (0.14, 0.28)

Parityb

Nulliparous 39 (35) 8.74 (4.39, 17.42)** 0.23 (0.15, 0.35)

Parity ≥1 73 (65) 3.53 (2.30, 5.42) 0.20 (0.14, 0.28)

Combined Annual Household Income ($)

< 20,000 46 (41) 4.03 (2.35, 6.89) 0.20 (0.13, 0.30)

20,000 – 40,000 11 (10) 3.77 (0.87, 16.34) 0.21 (0.09, 0.51)

> 40,000 13 (12) 16.35 (4.02, 66.45) 0.18 (0.07, 0.43)

Refused/Don’t know 42 (37) 4.34 (2.37, 7.94) 0.23 (0.15, 0.36)

Medi-Cal Insuranceb

No 20 (18) 5.01 (2.04, 12.28) 0.15 (0.08, 0.29)

Yes 90 (82) 4.69 (3.07, 7.16) 0.23 (0.17, 0.31)

Median (Range) Spearman ρ Spearman ρ

Age 25.4 (18.0 - 45.0) 0.00 −0.05

BMI 28.6 (17.2 - 65.8) −0.02 −0.27***

Gestational Age, weeks 20.0 (13.3 - 24.0) 0.01 0.01

Urine Collection time 12:50 pm (10:00 AM - 4:50 PM) 0.04 −0.12
aBPA in Conjugated form = BPA in glucuronide form + BPA in sulfate form. BPA in glucuronide form = BPA glucuronide*0.5614. BPA in sulfate form = BPA
sulfate*0.7404. The factors 0.5614 and 0.7404 are the ratios of the molecular weight of BPA to the molecular weights of BPA glucuronide and BPA
sulfate, respectively
bData missing on: smoking status (n = 5), education (n = 4), parity (n = 3), and Medi-Cal insurance status (n = 2)
* = p <0.1 and ** = p <0.05 for Kruskal-Wallis test
*** = p <0.05 for Spearman Correlation test
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Table 3 Crude and adjusted BPA analyte levels, by sources of exposure, in second trimester pregnant women from Northern and
Central California, 2009–2011 (n=112)

BPA in Conjugated Forma (μg/g creatinine) BPA (μg/g creatinine)

n (%) GM (95 % CI) MGM (95 % CI) GM (95 % CI) MGM (95 % CI)

Job involves handling paper receipts

Nod 89 (79) 4.11 (2.70, 6.25) 4.21 (2.83, 6.26) 0.22 (0.16, 0.29) 0.21 (0.16, 0.27)

Yes 23 (21) 9.13 (4.10, 20.37)** 8.98 (4.07, 19.83)*** 0.19 (0.11, 0.32) 0.18 (0.11, 0.32)

Touched or held paper receiptsb

Not in past 2 days 18 (16) 2.85 (1.03, 7.89) 3.78 (1.53, 9.35) 0.24 (0.11, 0.49) 0.22 (0.12, 0.41)

Yesterday 37 (33) 3.57 (2.00, 6.35) 3.40 (1.84, 6.27)*** 0.16 (0.10, 0.27) 0.19 (0.12, 0.29)

Todayd 57 (51) 6.98 (4.02, 12.09) 6.87 (4.16, 11.35) 0.24 (0.17, 0.33) 0.21 (0.15, 0.30)

Drank canned drinks

Not in past 2 daysd 57 (51) 6.32 (3.83, 10.41) 6.24 (3.81, 10.24) 0.21 (0.14, 0.31) 0.20 (0.14, 0.28)

Yesterday 44 (39) 3.65 (1.92, 6.95) 3.44 (1.94, 6.10) 0.22 (0.15, 0.34) 0.22 (0.15, 0.32)

Today 11 (10) 3.77 (1.05, 13.55) 5.73 (1.77, 18.59) 0.16 (0.06, 0.45) 0.18 (0.08, 0.40)

Drank cartoned drinks

Not in past 2 daysd 79 (71) 5.75 (3.58, 9.22) 5.81 (3.80, 8.86) 0.22 (0.17, 0.30) 0.23 (0.17, 0.30)

Yesterday 22 (20) 3.72 (1.78, 7.78) 3.73 (1.61, 8.64) 0.23 (0.12, 0.44) 0.16 (0.09, 0.30)

Today 11 (10) 2.38 (0.90, 6.33) 2.32 (0.68, 7.95) 0.11 (0.03, 0.32) 0.13 (0.06, 0.28)

Drank from paper cup

Not in past 2 daysd 55 (49) 5.55 (3.19, 9.66) 5.53 (3.35, 9.14) 0.22 (0.16, 0.32) 0.25 (0.18, 0.35)

Yesterday 28 (25) 3.18 (1.61, 6.28) 3.23 (1.53, 6.79) 0.15 (0.09, 0.28) 0.14 (0.08, 0.23)***

Today 29 (26) 5.61 (2.56, 12.29) 5.80 (2.82, 11.93) 0.24 (0.14, 0.42) 0.20 (0.12, 0.32)

Ate canned foodsc

Not in past 2 daysd 75 (67) 5.60 (3.52, 8.92) 5.58 (3.61, 8.62) 0.18 (0.13, 0.24) 0.18 (0.14, 0.25)

Yesterday or today 37 (33) 3.60 (1.91, 6.76) 3.78 (2.01, 7.11) 0.30 (0.19, 0.46) 0.25 (0.16, 0.39)

Ate food served or packaged
in paper or cardboard

Not in past 2 daysd 44 (39) 5.77 (2.99, 11.15) 5.87 (3.30, 10.45) 0.25 (0.17, 0.37) 0.27 (0.18, 0.40)

Yesterday 38 (34) 3.45 (1.94, 6.14) 3.57 (1.92, 6.63) 0.16 (0.10, 0.25) 0.15 (0.10, 0.23)****

Today 30 (27) 5.75 (2.74, 12.04) 5.62 (2.85, 11.09) 0.23 (0.13, 0.41) 0.19 (0.12, 0.31)

Purchases >1/2 of all mealsb

Nod 69 (64) 4.37 (2.66, 7.18) 4.42 (2.81, 6.95) 0.26 (0.18, 0.36) 0.24 (0.18, 0.33)

Yes 38 (36) 5.37 (2.87, 10.04) 5.55 (2.94, 10.47) 0.15 (0.09, 0.23)* 0.15 (0.10, 0.23)***

Consumes wineb

Nod 68 (62) 5.90 (3.72, 9.37) 6.39 (4.04, 10.12) 0.20 (0.14, 0.27) 0.20 (0.14, 0.27)

Yes 42 (38) 3.20 (1.71, 5.99)** 2.95 (1.65, 5.30)**** 0.24 (0.15, 0.39) 0.22 (0.15, 0.33)

Consumes beer

Nod 75 (67) 4.37 (2.69, 7.11) 4.84 (3.10, 7.55) 0.21 (0.15, 0.29) 0.21 (0.16, 0.29)

Yes 37 (33) 5.95 (3.39, 10.45) 5.06 (2.72, 9.42) 0.21 (0.14, 0.33) 0.19 (0.12, 0.28)

Eats food stored in clear,
shatterproof plastic containersb

No 38 (35) 4.93 (2.67, 9.10) 5.45 (2.98, 9.97) 0.26 (0.15, 0.45) 0.24 (0.16, 0.37)

Yesd 70 (65) 4.68 (2.90, 7.56) 4.55 (2.91, 7.13) 0.19 (0.14, 0.25) 0.18 (0.14, 0.25)

Uses food processorb

Nod 92 (84) 4.43 (2.94, 6.67) 4.23 (2.89, 6.20) 0.23 (0.17, 0.31) 0.21 (0.16, 0.28)

Yes 17 (16) 8.44 (3.19, 22.33) 12.81 (5.03, 32.60)**** 0.14 (0.08, 0.26) 0.18 (0.09, 0.34)
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of Missouri at Columbia (blinded to our results) for dir-
ect measurement via LC-MS/MS [42]. The University of
Missouri results were 100 % consistent with ours in
terms of distinguishing samples with high and low BPA
glucuronide levels and in terms of comparative concen-
trations (Table 4).

Discussion
We applied an analytic method to directly, and therefore
more specifically and accurately, measure urinary uBPA,
BPA glucuronide, and BPA sulfate, and found universal

and unprecedentedly high levels in our racially/ethnically
diverse sample of primarily low-income women in their
second trimester of pregnancy. The median concentra-
tion of Total BPA in our study (4.61 ng/mL) was twice
the levels reported in pregnant women in the United
States and other countries (range 0.7 – 2.7 ng/mL)
(Fig. 2) [22, 25, 27, 43, 44]. Moreover, 30 % of our partic-
ipants had creatinine-adjusted Total BPA levels that
were higher than the 95th percentile reported among
U.S. pregnant women in the 2005–2006 NHANES [22].
We also detected uBPA in greater than 85 % of study
participants and observed high variability in the relative
proportions of uBPA and BPA metabolites detected in
urine samples.
The high values of BPA glucuronide in some of our

subjects were confirmed in split samples analyzed by the
University of Missouri, which was blinded to our results.
Our results were 100 % consistent in that we both dis-
tinguished high and low BPA glucuronide levels as wel
as the ranking of the BPA glucuronide levels in the sam-
ples. The differences in absolute values we observed be-
tween the two laboratories’ measurements may be due
to the use of different sample extraction methods and/or
sources of reference and internal standards. Although

Table 3 Crude and adjusted BPA analyte levels, by sources of exposure, in second trimester pregnant women from Northern and
Central California, 2009–2011 (n=112) (Continued)

Uses blender with plastic pitcherb

Nod 82 (76) 5.25 (3.35, 8.21) 5.35 (3.53, 8.10) 0.22 (0.16, 0.30) 0.21 (0.16, 0.28)

Yes 26 (24) 3.93 (1.91, 8.08) 4.05 (1.95, 8.41) 0.19 (0.11, 0.34) 0.20 (0.12, 0.32)

Uses kitchen appliance with
plastic bowl/pitcherb

Nod 58 (54) 5.58 (3.31, 9.41) 5.63 (3.47, 9.13) 0.23 (0.16, 0.33) 0.20 (0.15, 0.29)

Yes 49 (46) 3.92 (2.24, 6.84) 4.02 (2.35, 6.88) 0.19 (0.13, 0.29) 0.20 (0.14, 0.29)

Knows or heard about BPAb

Nod 65 (60) 3.94 (2.54, 6.10) 4.32 (2.69, 6.93) 0.20 (0.14, 0.28) 0.19 (0.14, 0.27)

Yes 44 (40) 6.55 (3.33, 12.89) 5.95 (3.37, 10.50) 0.23 (0.15, 0.34) 0.21 (0.14, 0.31)

Takes action to avoid BPA

Noned 81 (72) 5.16 (3.28, 8.12) 5.31 (3.48, 8.10) 0.20 (0.15, 0.28) 0.20 (0.15, 0.27)

Avoids BPA or purchases 14 (12)

BPA-free labeled products 2.16 (0.85, 5.48) 2.48 (0.90, 6.85) 0.30 (0.15, 0.62) 0.25 (0.12, 0.51)

Avoids BPA and purchases 17 (15)

BPA-free labeled products 6.93 (2.67, 17.99) 6.09 (2.46, 15.08) 0.18 (0.08, 0.40) 0.18 (0.10, 0.34)

GM geometric mean, MGM marginal geometric mean
aBPA in conjugated form = BPA in glucuronide form + BPA in sulfate form. BPA in glucuronide form = BPA glucuronide*0.5614. BPA in sulfate form = BPA
sulfate*0.7404. The factors 0.5614 and 0.7404 are the ratios of the molecular weight of BPA to the molecular weights of BPA glucuronide and BPA
sulfate, respectively
bData missing on: touch receipts (n = 5), purchased meals (n = 5), consume wine (n = 2), store food in plastic food container (n = 4), food processor (n = 3), blender
with plastic pitcher (n = 4), kitchen appliance with plastic bowl/pitcher (n = 5), and knowledge of BPA (n = 3)
c4 participants who reported eating canned foods were grouped with “Ate yesterday” category
d = baseline group
*p <0.1 and ** = p <0.05 for Kruskal-Wallis test
*** = p <0.1 and **** = p <0.05 for multivariable linear regression, controlling for maternal education and race/ethnicity (for BPA in conjugated form outcome) and
education and BMI (for BPA outcome)

Table 4 University of Missouri confirmation of urinary BPA
glucuronide levels in second trimester pregnant women from
Northern and Central California, 2009–2011 (n=112)

Direct measurement of BPA glucuronide (ng/mL)

Sample University of Missouri UCSF

A 2.96 0.80

B 6.82 5.95

C 14.25 10.22

D 221.49 439.56

E 332.73 463.70

F 1069.87 671.67
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both laboratories used solid phase extraction, we used
different columns (our laboratory used Waters Oasis
HLB SPE cartridge while the University of Missouri used
Thermo Hypersep C18 SPE cartridge). Likewise, the
sources of reference and internal standards differ be-
tween the two laboratories. These differences could have
resulted in differences in the accuracy, precision and re-
covery of the methods in each laboratory. Further cross-
validation is needed to identify the exact sources of the
differences in the absolute values.
Although women in the highest annual household in-

come bracket had the highest geometric mean levels of
BPA in conjugated form, our study population as a
whole was predominantly low income (50 % reporting
had annual household incomes < $40,000). Low income
has been associated with higher Total BPA levels in pre-
vious studies, possibly due to differential sources of ex-
posure [23, 24], and thus may explain, in part, the high
levels of BPA analytes we observed. None of the other
BPA exposure sources we investigated were significantly
associated with having high (i.e., >50 ng/mL) levels of
Total BPA (data not shown).
Our improved LC-MS/MS analytic methods could also

explain the higher Total BPA levels we observed. We
used LC-MS/MS to directly measure uBPA, BPA glucu-
ronide, and BPA sulfate, whereas most previous studies

used enzyme hydrolysis followed by HPLC-MS/MS [42].
The use of enzyme hydrolysis may underestimate BPA
analyte levels if these reactions are incomplete or do not
otherwise function as predicted, and it is plausible that
this underestimation would be greatest at the highest
concentrations of glucuronidated or sulfated BPA. The
results of our preliminary exploration of this hypothesis
indicate that the indirect method of quantification may
underestimate samples with very high levels of BPA glu-
curonide by up to a factor of four and that, although
BPA glucuronide is fully deconjugated by commercial
glucuronidases, only a small fraction of it is converted to
uBPA (which indirect methods use as a surrogate meas-
ure for conjugated BPA). These findings suggest that hu-
man exposure to BPA has been previously
underestimated. Further studies to determine the major
product formed from the deconjugation of BPA glucuro-
nide by commercial beta-gluduronidases are underway.
Although direct measurements of BPA have been

made in the general population [45], to our knowledge,
this is the first study to report direct measurements of
uBPA in urine of pregnant women. Our detection of
uBPA in 87 % of urine samples challenges prior assump-
tions that internal exposure to uBPA is limited due to
rapid first-pass glucuronide metabolism [46, 47].
Whether the presence of uBPA in urine is due to
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Fig. 2 Median Urinary Total BPA levels (ng/mL) in studies1 of pregnant women. 1. Samples sizes: Current study, n = 112; United States (NHANES) [22],
n = 86; Massachusetts [62], n = 84; Ohio [63], n = 244; New York [64], n = 198; Ohio [27], n = 339; New York [65], n = 404; California [25], n = 491; Canada
[66], n = 1,876; Pennsylvania [67], n = 10; Puerto Rico [68], n = 105; Mexico [43], n = 60; France [44]), n = 287; Spain [69], n = 120; Netherlands
[70], n = 100; Australia [71], n = 26; Korea [72], n = 757; China [73], n = 567.2. Total BPA = BPA + BPA in glucuronide form + BPA in sulfate
form. 3.BPA in glucuronide form = BPA glucuronide*0.5614. BPA in sulfate form = BPA sulfate*0.7404. The factors 0.5614 and 0.7404 are the
ratios of the molecular weight of BPA to the molecular weights of BPA glucuronide and BPA sulfate, respectively
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incomplete metabolic clearance, dermal or inhalation ex-
posure (which do not undergo first-pass metabolism),
the deconjugation of BPA glucuronide or BPA sulfate by
β-Glucuronidases or estrone sulfatase, respectively, the
release of uBPA stored in tissues, other unidentified
sources, or combinations thereof cannot be ascertained
from our data. Nevertheless, our findings underscore the
importance of obtaining a better understanding of the
routes of human exposure to BPA as well as human
metabolic capacity and pathways for BPA, as all of these
factors have important implications for risk assessment.
We observed large variability in the relative propor-

tions of uBPA, BPA in glucuronide form and BPA in sul-
fate form across study participants, with approximately
5 % of the population having higher levels of BPA in sul-
fate form than BPA in glucuronide form. This could be
due, in part, to increased activity in secondary metabolic
pathways in response to the saturation of glucuronida-
tion capacity (as seen with immature glucuronidation
capacity in the fetus [48–50]): the lack of association be-
tween Total BPA and BPA in glucurondiated form,
coupled with the positive correlation between Total BPA
and BPA in sulfated form seen in our population, sug-
gest that glucuronidases are either saturated or inhibited
at high BPA load, thus diverting metabolism to the sulfa-
tion pathway. An additional factor that may influence
BPA metabolism is polymorphisms in genes encoding
glucuronidation and sulfation enzymes. Specifically, sev-
eral of the primary enzymes involved in BPA glucuroni-
dation and sulfation have functional polymorphisms that
yield variants with significantly lower or higher metabolic
activity [51–53]. For example, SULT 1A1, a common sul-
fonation enzyme of small planar phenols like BPA, is poly-
morphic. Its *1 allele is known to significantly sulfonate
faster than its *2 and *3 alleles [54]. Our findings highlight
the importance of quantifying the complete suite of BPA
conjugates and the need for additional research on factors
that influence their concentrations.
We found that women with occupations that required

handling of receipts and women who recently touched
paper receipts had higher levels of BPA in conjugated
form. These results are consistent with the findings of
Braun et al., who found a positive association between
occupation as a cashier and Total BPA levels in pregnant
women [27], as well as other studies of the general US
population [28, 29], and Hormann et al., who demon-
strated dermal and oral absorption of uBPA resulting
from holding thermal receipt paper followed by con-
sumption of hand-held food [55]. Several studies have
shown that thermal paper (including that used for cash
register receipts) contains miligrams per gram levels of
BPA [5–8, 56–58] and that BPA can be transferred from
receipts to skin and persist there even after hand-
washing [56]. Our results support the importance of this

source of exposure to BPA and also suggest that receipt-
related exposure to BPA is not limited to those who are
occupationally exposed.
Another notable finding is that participants who re-

ported knowledge of or action to avoid BPA did not have
lower levels of BPA analytes in their urine. This is
consistent with a recent randomized dietary trial that
concluded that education and written guidelines are
insufficient to reduce BPA exposure and only federal or
industrial actions can completely eliminate exposure to
BPA via the food supply [59] and with the lack of aware-
ness of thermal paper as a source of BPA exposure dur-
ing the time that our study was conducted.
Unlike other U.S. studies that report the lowest Total

BPA levels in Hispanic pregnant women, we found the
lowest levels of Total BPA in African Americans. Our
findings also did not confirm the previously reported as-
sociations between Total BPA and SES, age, smoking, or
consumption of canned soup and vegetables or pur-
chased foods [23–25, 27, 30, 33, 60, 61]. However, this
could be due to lack of variability in our sample with re-
spect to these attributes. Our study participants are pre-
dominately low income and represent a narrow age
range, and although the average canned food and bever-
age consumption in our sample was 5.6 and 10.2 times/
week, respectively, only four participants reported con-
suming canned foods and 11 reported drinking canned
beverages on the day of urine collection. Thus, it is likely
that we lack sufficient sample size to evaluate these
sources of exposure. Lastly, we relied on self-reported
measures of smoking while other studies measured bio-
markers of environmental tobacco smoke [27, 61], which
may account for our null findings.
Our study has several limitations. Total BPA levels

have been found to fluctuate during different stages of
pregnancy [25] and throughout the day [27]. We col-
lected a single spot urine sample and therefore could
not account for this intra-individual variability in our
evaluation of exposure sources. However, we did not ob-
serve any association between any BPA analyte (creatin-
ine-adjusted or not) and time of urine collection
previously reported in other studies of pregnant women
[25, 27], possibly because urine was collected within a
narrow time range (Table 2). Another weakness is our
modest sample size and large number of investigated ex-
posure sources. False positives may have arisen from
multiple comparisons, and our results warrant confirm-
ation in future studies.

Conclusion
Our study provides novel data on uBPA, BPA glucuro-
nide and BPA sulfate in urine of a low-income and eth-
nically and racially diverse sample of pregnant women, a
sizeable subset of which has substantially elevated levels.

Gerona et al. Environmental Health  (2016) 15:50 Page 11 of 14



We observed near-universal exposure to biologically ac-
tive BPA among pregnant women as well as substantial
variability in BPA metabolic clearance, raising additional
concerns for effects on fetal development. Our results
also indicate that dermal contact with thermal paper
receipts is an important source of exposure than could be
mitigated. Lastly, our work points to the difficulty preg-
nant women have avoiding BPA exposure on an individual
level and therefore underscores the need for changes that
focus on the use and sources of BPA in commerce.
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