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Abstract

Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate
host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts
will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that
pathogens that have co-evolved with their hosts can manipulate their hosts’ behaviour at various levels to augment an
infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously
shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing
their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to
miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the
response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites.
Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible
snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite.
Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for
example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon
exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a
parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic
reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental
mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.
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Introduction

The fresh water snail Biomphalaria glabrata is an intermediate

host for Schistosoma mansoni parasite, which causes one of the

most prevalent parasitic infections in mammals, known as

intestinal schistosomiasis (Bilharzia). The disease is endemic in

77 countries of the tropics and subtropics, and effects over 230

million people yearly whom are infected with S.mansoni and other

schistosoma species [1–2]. Despite the combined use of mollus-

cicides to reduce the snail population along with mass chemo-

therapy on humans, persistent poverty, inadequate supply of clean

water, and the ongoing agricultural and irrigation projects

expanding the aquatic habitat of the snail, all limit the effects of

control measures taken so far [3]. In view of these challenges long-

term control measures for schistosomiasis are being sought. It is

hoped that an understanding of the basic biology of the snail –

parasite relationship, that can be interfered with, will lead to the

development of new control measures that will limit the spread of

schistosomiasis by blocking the transmission of the parasite in the

snail-host.

Biomphalaria snails vary in their compatibility to schistosomes

such that some display resistance to infection while others are

susceptible [4]. The infection is initiated when a miracidium

penetrates a susceptible snail via the head foot region, and

subsequently develops into a primary sporocyst. Soon after,

however, in a resistant snail the sporocyst is encapsulated by

circulating haemocytes, leading to the destruction and elimination

of the parasite by a cytotoxic reaction involving free radicals. In

contrast, susceptible snails are not able to successfully defend

against S. mansoni larvae and an infection will develop following

miracidial exposure [5–6]. Research investigating the transcrip-

tional modulation of genes upon infection has elucidated some of

the genetic factors which influence resistance and susceptibility in

the snail, such as Fibrinogen Related Proteins (FREPs), heat shock

genes, ferritin, actin [7–11] have all been identified. The

development of an in vitro tissue culture model to support the
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intramolluscan stages of S. mansoni has also aided the investiga-

tions into B. glabrata’s relationship with S. mansoni [12–14].

Using such a model we have previously utilised the Biomphalaria
glabrata embryonic (Bge) cell in vitro co-culture system to

determine spatio-temporal effects on specific genes in the nuclei

of Bge cells that have been co-cultured with S. mansoni miracidia

[15]. Both genes and the chromosome territories that house genes

were found to have a non-random radial position within the Bge

cell nuclei [15–16]. When schistosome miracidia were added to

the culture media, large scale nuclear repositioning of specific

genes in Bge cells was determined using fluorescence in situ
hybridisation with specific bacteria artificial chromosomes (BAC)

probes and image analysis. The intranuclear movements of genes

correlated with the temporal kinetics of gene expression, meaning

that genes were repositioned within nuclei with their up-regulation

in expression after a signal was transmitted thorough the cell that

parasites were in the vicinity. Co-culturing with live attenuated

miracidia on the other hand failed to elicit similar gene expression

and gene loci repositioning, indicating that normal but not

attenuated schistosomes provide stimuli that evoke host responses

[15]. This was the first time spatio-epigenetics had been seen in a

host challenged by the presence of a parasite and only the second

time for any pathogen-host infection. Chromosome territories

were seen to change position with a viral infection [17]. These

repositioning events are probably initiated by alterations to

chromatin modelling which has been shown extensively to be an

aspect of host genome control mechanisms in cells infected with

bacteria (see for review [18]). Changes in spatial positioning of

chromosome territories and/or gene loci are known during

physiological processes such as differentiation and development

[19–20], disease [21–27], and cellular proliferation [25,28]. In

order to determine if the gene repositioning seen in the in vitro
system was a response found also in vivo in whole organisms and

thus a true parasite induced mechanism it was critical to study this

phenomenon in live snails. In the study presented here we utilise

the B. glabrata fluorescence in situ hybridisation technique using

snail ex vivo cells to determine spatio-temporal effects on three

genes in the resistant and susceptible snails after early exposure to

S. mansoni miracidia. We find the same phenomenon exists in
vivo and snail genes relocate in snail nuclei soon after exposure to

schistosomes, concurrent with the up-regulation of their corre-

sponding transcript. We believe that we are seeing in the intact

snail, as previously observed in the Bge- parasite co-culture in vitro
system, a physical schistosome- specific reorganisation of the host’s

genome in response to the parasite and by the parasite, in a

manner suggesting that early direct influence on a susceptible but

not resistant snail’s transcriptional activity is controlled by the

parasite. This is the first time that this type of pathogen-induced

spatio-epigenetics has been observed in an intact whole organism

and should be investigated in other co-evolved host:pathogen

relationships.

Results

Non-random positioning of gene loci occurs in S.
mansoni exposed intact Biomphalaria glabrata snails

Three genes, actin, ferritin, and Hsp 70 that were previously

found to be up-regulated after an infection of the snails with S.
mansoni miracidia [8,28–29] were delineated using fluorescence in
situ hybridisation (FISH) of labelled BAC probes in interphase

nuclei of B. glabrata snails from the susceptible (NMRI) and the

resistant (BS-90) snail lines. The gene signals can be seen as small

concentrated loci in the interphase nuclei and all genes displayed

two gene signals, one for each allele (see Figure 1). In order to

determine the nuclear position of the gene loci in interphase

nuclei, fifty images of nuclei for each gene were captured and their

position assessed using a bespoke erosion script analysis (Figure 1A

[30]). The script outlines the DNA stain DAPI in collected images

of the nuclei and then creates five concentric shells of equal area.

The intensity of fluorescent signal from the genes and DAPI is

then measured. In order to normalise the 2D data for the original

3-dimensionality of the cells the percentage of gene signal in each

shell is divided by the percentage of DAPI signal for the

corresponding shell. These data for gene loci are then plotted as

a bar chart. The genes are described as having an internal location

if the graph is skewed to the right (shell 5), an intermediate location

if most of the signals are in shell 3 and towards the nuclear

periphery if the graph is skewed to shell 1 (Figure 1). All of the

three gene loci displayed non-random radial positioning in

interphase nuclei of snail ex vivo cells, with actin and ferritin
being located towards the nuclear interior, and heat shock protein

(Hsp 70) being located at an intermediate position within nuclei.

The nuclear location of the genes was similar between the NMRI

and BS-90 snail strains (see 0 hours in Figure 2, Figure 3,

Figure 4). Actin was found in the same nuclear location in the

ex vivo snail cells as it was in the Bge cells, in the nuclear interior,

however, ferritin was found in the nuclear interior in the ex vivo
cells where it was at the nuclear periphery in the Bge cells [15].

This might be due to differences between embryonic cells and

adult cells, in vitro and in vivo cells, or cell type. The embryonic

Bge cells appear fibroblast-like but cell type has never been

actually identified. The cells from the adult come from the

ovotestes and will be a mixture of somatic and germ cells. Only

cells with two signals were analysed so that we knew we were

assessing adult somatic cells rather than gametes. This ovotestes

was selected due to it containing more proliferating cells than

other tissues (data not shown) rather than quiescent or senescent

cells and we would argue this makes them as a population more

responsive. The ovotestes were easier to identify and remove than

Author Summary

Bilharzia is a parasitic disease endemic in many parts of the
world. The schistosoma parasite that causes Bilharzia
infects humans but uses a fresh water snail as a secondary
host. These two organisms have co-evolved together, and
as such the parasite will have mechanisms to overcome
the host defences. Understanding this delicately balanced
relationship is fundamental to controlling or eradicating
the disease. We have studied how this parasite can
influence how the DNA within the snail behaves. We have
shown snail genes have specific locations within the cell
nuclei. Further, we have revealed that specific snail genes
related to a schistosome infection change to a new non-
random nuclear location as they are turned on or up-
regulated. We have snail strains that are susceptible or
resistant to the infection of parasites and we can also take
live parasites and make them unable to complete an
infection by irradiating them. In this unique study, we have
shown a gene that is involved in stress pathways moves to
a new nuclear location and becomes turned on, but only in
susceptible snails, infected with fully functional parasite.
Our data suggest that this gene is regulated by the
parasite, which has control over the host’s DNA, so that the
gene is moved to an area where it can be actively
expressed. We have uncovered a novel mechanism
whereby the spatial organization of a host organism is
interfered with by a pathogen. This type of control is
probably found in other host-pathogen relationships.

Gene Repositioning in Snails Infected with Schistosoma mansoni
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other tissues ensuring that the population of cells we analysed were

similar. We have shown previously, in the pig, that chromosomes

are found in similar locations between cells in culture and cells in

frozen tissue [31] and so do not feel it is a simply an in vitro
induced situation. However, Bge cells have been shown to possess

an abnormal complement of chromosomes, aneuploidy, which

may impact gene positions in these cells [16].

Gene positioning is altered in B. glabrata snails after
exposure to S. mansoni miracidia and is correlated with
gene expression

Infection of B. glabrata with S. mansoni miracidia modulates

host gene expression resulting in the upregulation of certain genes

including actin, ferritin, and Hsp 70 [8,28–29]. Previously, actin
and ferritin were shown to be non-random repositioned in the in
vitro co-culture experiments with the parasite and Bge cells [15].

We have now taken a step further to analyse the behaviour of these

genes in the susceptible and resistant snail lines after exposure to S.
mansoni miracidia. Considering that genes and chromosomes can

move within a matter of minutes to hours within the nuclear

environment [25,32–34], time points were taken at 0, 0.5, 2, 5 and

24 hours after exposing snails to miracidia. To correlate the

alteration in the spatial positioning with gene expression,

quantitative real time (qRT)-PCR was performed using RNA

isolated from parasite-exposed snails for the same time points. In

order to determine whether changes observed in gene positioning

and gene expression are purely due to the infection process rather

than an injury mediated response associated with intra-dermal

penetration of the parasite into the snail, nuclei and RNA samples

were collected from snails that had been infected with attenuated

miracidia.

Genes display a differential response with respect to gene

repositioning between the susceptible and resistant snail

lines. Figure 2 displays the gene positioning of actin at different

time points in the NMRI and BS-90 snail lines. In the NMRI

(susceptible) snails the actin gene loci moved from the nuclear

interior towards a more intermediate position within the nuclei at

30 min, and subsequently moved back to the nuclear interior after

5 hours. Interestingly however, no major repositioning was

observed for the actin gene loci in the BS-90 (resistant) snails.

The repositioning of actin in the susceptible snails correlated with

a 16-fold maximum increase in its expression at 2 hours after

exposure and 1.5 hours after gene repositioning. The elevation in

gene expression was initiated at 30 minutes after exposure,

indicating close correlation with spatial repositioning. In the

resistant BS-90 snails there was a 22-fold increase in gene

expression after only 30 min of infection. Although there was no

major movement of the actin gene in these snails, the actin gene

loci were already at a more intermediate nuclear location in the

susceptible snails after movement had been induced. T-tests

between the position data for 0.5 hours in the susceptible snails

and 0 hours in the resistant snails show only shell 2 being

statistically different at the 95% confidence interval and between

0.5 hours in the susceptible snails and resistant snails only shell 3

was statistically different at the 95% confidence interval. Although

there are some differences we suggest that actin was already in a

prime position for transcription in the resistant snails. No

repositioning of gene loci or change in gene expression was

observed for actin in snails infected with attenuated miracidia.

The data for the positioning of the Hsp 70 gene in timed

samples prepared for FISH are displayed in Figure 3. Infection

with normal miracidia in the NMRI susceptible snails caused a

shift in the position of the gene two hours after exposure, from an

intermediate position towards a more internal position within the

nuclei, with thegraphs displaying the position of Hsp70 skewed

towards shell 5, the nuclear interior and displaying statistically

significant differences for shell 5 at 2 hours and shell 3 at 5 hours.

This repositioning event of Hsp 70 gene loci correlated directly

with the upregulation of gene expression as shown by qRT-PCR.

In the resistant BS-90 snails however, Hsp 70 gene loci do not

alter their intermediate nuclear position and this is in conjunction

with the qRT-PCR data showing no change in gene expression.

There are no statistical differences between the positions of the

Hsp70 genes after infection with attenuated parasites when

compared to before infection until 24 hours, where there is a

statistical difference for shell 1. In the resistant snails there is no

change in the location of the Hsp70 gene nor meaningful increase

in gene expression at 2 or 5 hours. Furthermore, there is little gene

expression in the resistant snails and there is only a slight

difference of gene position with statistical significant differences for

shell 1 at 5 and 24 hours only between the resistant and susceptible

Figure 1. Representative images of the erosion script analysis. Image A displays a composite cartoon of the nucleus where the computer
script has outlined the DAPI signal staining DNA (blue) and created five shells of equal area. The script measures the intensity of the fluorescent
signals from both the genes (green) and the DAPI and records these. In order to normalise the data, the percentage of gene signal in each shell is
divided by the DAPI signal for the corresponding shell. The data can then be plotted as a bar chart. Images B, C, and D are displaying genes having
peripheral, intermediate, and internal positions respectively. Scale bar = 10 mm.
doi:10.1371/journal.pntd.0003013.g001

Gene Repositioning in Snails Infected with Schistosoma mansoni
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Figure 2. Charts displaying the in vivo radial positioning and expression profile of B. glabrata actin gene in the interphase nuclei of
cells derived from NMRI (A) and BS-90 (B) snail strains, pre and post exposure to S. mansoni to normal miracidia (top row of charts,
in red) or irradiated attenuated miracidia (bottom row of charts, in grey) over 30 minutes, 2 hours, 5 hours and 24 hours. B. glabrata
snails were infected with miracidia, dissected, fixed, and subjected to 2-D FISH or RNA was isolated and q-RT-PCR was performed (middle chart). In
the NMRI snail strain actin is repositioned within interphase nuclei after infection and this is correlated with changes in gene expression (A). No
repositioning is observed in the BS-90 snails, however the gene is expressed 30 minutes after infection (B). No repositioning of gene loci or change in
expression was observed for actin in snails infected with attenuated miracidia. Statistically significant differences, as assessed by two-tailed Student’s

Gene Repositioning in Snails Infected with Schistosoma mansoni
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snails. No evidence for the relocation of the Hsp 70 gene loci and

no induction of Hsp 70 expression were detected by qRT-PCR

when the two snail lines were exposed to attenuated miracidia,

indicating that these results reflect a spatio-epigenetic influence

from the parasite in susceptible snails. Heat shock proteins have

been found as important genes for the parasite to infect its host

since in experiments where heat shock protein function is inhibited

with a drug geldenamycin the susceptible snail is rendered resistant

to parasitic infection [35]. Furthermore, heat shocking the resistant

snail makes it susceptible to infection. Revealing the parasite-

mediated spatio-epigenetic control over Hsp 70 expressions in a

parasitic infection is a further step in understanding how the

presence of heat shock proteins permits an infection.

Ferritin may not be involved in the infection process but

acts as an injury mediated response gene. The ferritin gene

behaved differently to the other two genes since it moved in all

situations in susceptible, and resistant snails, when exposed to

either normal or attenuated parasite. Figure 4 displays the

positioning of the ferritin gene loci and corresponding gene

expression. In the NMRI susceptible snails ferritin repositioned

from the nuclear interior to a more intermediate position at

30 min post -exposure. Interestingly, ferritin gene loci also

repositioned at 30 min in these snails exposed instead to

attenuated miracida, correlating with a 37-fold increase in the

expression of this gene. A similar response was seen in BS-90

resistant snails after exposure to attenuated miracidia. In these

snails, ferritin repositioned to the nuclear periphery, which once

again correlated with its up-regulation as determined by qRT-

PCR. There was a dramatic alteration in gene positioning in BS-

90 snails after 30 minutes exposure to normal miracidia with the

majority of gene loci located in the second shell of the eroded

nuclei, more towards the nuclear periphery. This again correlated

with an 8-fold increase in the expression of ferritin message at

5 hours. There is only one statistical difference between the ferritin

gene movement in the susceptible snails infected with normal

parasite as compared to attenuated parasite and that is for shell 2

at 0.5 hours, when we see the correlated upregulation in gene

expression. Although a differential temporal response for ferritin
was observed between the susceptible and the resistant snails,

relocation of ferritin gene loci and the induction of gene

expression in snails infected with attenuated miracidia suggested

that this reflected a response to the presence of the miracidia from

injury as has been seen in human tissues [36] during the

intradermal penetration of the snail host rather than a response

to an active infection mechanism elicited by the parasite.

Although, it hard to explain why there is a difference in gene

expression in the snail when infected with normal or attenuated

miracidia it is possible that the attenuated parasites continue to

cause an irritation since they do not progress with their life cycle.

Discussion

Following the initiation of the snail genome project [37], interest

in B. glabrata has greatly increased, establishing it as the

molluscan model organism, especially in host: pathogen studies.

While the majority of studies using this model system concentrate

on the molecular biology of the snail in order to understand the

snail – parasite relationship, only our group examined the genome

organisation in this host: pathogen interaction. Thus, in our earlier

study [16] where we used an in vitro co-culture assay employing

Bge cells and schistosome miracidia, we revealed that a profound

reproducible reorganisation of the snail genome occurs in response

to the presence of normal but not attenuated miracidia [15]. That

study was the first to analyse genome behaviour in molluscan cells

and to show specific non-random gene repositioning in host cells

after exposure to a eukaryotic metazoan parasite. In the study

present here we have taken these studies further and observed

similar genome reorganisation following infection with the

schistosome parasite in intact whole snails. Major gene reposi-

tioning events in the interphase nuclei of B. glabrata cells were

revealed which interestingly differed between parasite resistant and

susceptible snail lines. Repositioning of gene loci for actin, ferritin,

and Hsp 70 all correlated with up-regulation of their expression as

determined by qRT-PCR. This fits with an evidence -supported

hypothesis in the mammalian genome behaviour field that certain

genes, probably those that are either being switched on, or are

vastly up-regulated, move to an area of the nucleus where

transcription is more active [34] probably to associate with a

transcription factory [38]. Due to the lack of whole chromosome

painting probes for B. glabrata at the present time it is not possible

to say if whole chromosomes or genes on chromatin loops have

made the transition but the movement is probably initiated by

chromatin remodelling with respect to acetylation and mediated

thorough nuclear motor proteins. Pathogen chromatin remodel-

ling in the host genome, regulated by a pathogen, has been

observed for many bacterial infections [18].

The actin gene loci repositioned from the nuclear interior to an

intermediate position between the nuclear interior and periphery

in the susceptible snails after the infection, but did not alter their

position in the resistant snails. The repositioning of gene loci in the

susceptible snails correlated with the expression of the gene

1.5 hours after the repositioning event. However in the BS-90

snails there was a rapid response to parasite exposure with a large

fold increase in the expression of actin after 30 min. Although in

the BS-90 snails no repositioning was observed for the gene loci at

any of the 0.5, 2, 5, and 24 hour time points, alterations in the

organisation of interphase nuclei can be a very rapid process of less

than 15 mins after a change in status in a cell [25]. Therefore it

may well be that the gene was repositioned and moved back to the

nuclear interior within 30 min. On the other hand the actin gene

loci in the BS-90 cells before infection were in a similar nuclear

position to the actin loci in NMRI cells after exposure which could

mean that this gene does not need to move far to reach an

amenable transcription factory. Actin protein is a major constit-

uent of the cytoskeleton and is involved in a number of cellular

processes [39]. Increase in the expression of actin has been

reported in plant- fungal pathogen interactions [40]. Thus the

rapid increase in expression observed in the BS-90 snails could be

due to rearrangements in the host cytoskeleton that the NMRI

snails being susceptible fail to respond as efficiently. The possibility

that the actin gene is already in place within nuclei to respond

more rapidly to an infection could be linked to what makes BS-90

resistant to an infection.

We feel one of the most interesting findings in this study is that

Hsp70 relocation and expression are tightly temporally correlated

at 2 and 5 hours in susceptible snails which is shown to be

significant using t-tests. This relocation and expression is only

found in susceptible snails with normal but not attenuated parasite.

t-test, between normalized gene signal in each shell of control nuclei compared with infected snail nuclei are indicated by a black asterisk (P,0.05).
Student’s t-test between normalized gene signal in each shell of NMRI snail nuclei compared with BS90 snail nuclei are indicated by a red asterisk (P,
0.05). Error bars = S.E.M.
doi:10.1371/journal.pntd.0003013.g002
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Figure 3. Charts displaying the in vivo radial positioning and expression profile of B. glabrata Hsp 70 gene in the interphase nuclei of
cells derived from NMRI (A) and BS-90 (B) snail strains, pre and post exposure to S. mansoni normal miracidia (top row of charts,
red) and attenuated irradiated miracidia (bottom row of charts, grey). B. glabrata snails were infected with miracidia, dissected, fixed, and
subjected to 2-D FISH and RNA was isolated and q-RT-PCR performed (middle chart). In the NMRI strain snail’s Hsp 70 gene is repositioned after
infection from an intermediate position to a more internal position within the nuclei. This repositioning is directly correlated with changes in gene
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We know that the heat shock proteins are intimately involved in a

positive outcome for the parasite since exposing the BS-90 snail to

heat changes it from a resistant snail to becoming susceptible to

parasite infection [35] and blocking the function of the Hsp 90
genes makes the susceptible snail NIMR resistant. We also know

that a rise in temperature in snails increases Hsp 70 gene

expression and this correlates with the Hsp 70 gene loci changing

their location (H. Arican-Goktas, M. Town, CE Eskiw, M. Knight

and JM Bridger unpublished data). It is therefore possible that a

stress response that includes Hsp 70 expression permits an

infection and this is controlled through an epigenetic pathway

such as spatial positioning and/or transcriptional regulation of the

gene. Evidence for this is found in the resistant BS-90 snails where

we find neither Hsp 70 gene movement nor gene expression

similar to the susceptible NIMR snails when exposed to attenuated

parasites (Figure 3).

In this study we have shown that relocation of genes correlated

with change in their transcriptional status and for the first time we

have provided evidence for the movement of a gene (actin) prior to

an alteration to its transcriptional activity, occurring 1.5 hours

after relocation. Thus, we have some evidence to add to the debate

on what comes first; gene expression or relocation. Although, in

order for a gene to be moved to a new location there needs to be

signal and this is probably epigenetic via chromatin modification

followed by a nuclear motor activity. The snail genome does carry

marks of CpG island methylation [41] and histone modifications

[42] and detailed analysis of many of the chromatin modifications

in these snail genes before and after an infection will be the basis of

a future study from our laboratories. Further, it is not unlikely that

the parasite could have co-evolved to epigenetically control host

gene expression to aid their infection and survival. This is already

known to happen in host/bacterial relationships where the

bacteria elicit chromatin remodelling events i.e. histone modifica-

tion, DNA methylation and affect transcription and processing of

RNA [18]. Thus, there is no reason why in the more complex co-

evolved relationship of schistosome with the snail- host that the

parasite would not have also developed such regulatory control

over both its hosts, snail and human. Indeed, it has recently been

shown that schistosomes already use epigenetic control for gene

expression that permits the parasite to invade specific strains of

host snail [43]. Furthermore, epigenetic control involving cytosine

methylation has been shown to play a role in the parasite life cycle,

including the egg laying process [44]. These, novel data on gene

movement in the snail host mediated by a pathogen that is far

more complex than either viral or bacterial infections where

spatio- epigenetics has been shown to also occur should help

uncover fundamental elements of genome behaviour permitting

infection in other host: pathogen systems, most importantly, in the

human host and schistosome parasite relationship.

Materials and Methods

Biomphalaria glabrata stocks and parasite exposure
Adult B. glabrata snails from the susceptible line (NMRI) and

the resistant line (BS-90) were incubated overnight in sterile

distilled water containing 100 mg/mL ampicillin at room temper-

ature in an attempt to reduce contaminating resident bacteria in

the snails. Individual snails were exposed to either attenuated or

normal miracidia (10 miracidia per snail) at five different time

points (0, 0.5, 2, 5, 24 hours) post-infection. Attenuated miracidia

were obtained by irradiation (20 Krad) as described by Ittiprasert

et al 2009. Following parasite exposure the snail ovotestes were

dissected and incubated in hypotonic potassium chloride solution

(0.05 M) for 30 min, during which time the tissues were macerated

with a needle to obtain single cells. The cells were then centrifuged

at 163 g for 5 min and fixed with methanol and acetic acid (3:1 v/

v) for 15 min at room temperature. The fixed cells were washed

five times with methanol and acetic acid (3:1 v/v) and stored at

4uC until further use. The cells of the ovotestes were chosen since

they contain more proliferating rather than quiescent or senescent

cells than other areas of the snail and so maybe as a population be

more responsive to an infection. The ovotestes are also easier to

isolate than other tissues ensuring that similar cells are being

compared. Cells were dropped onto wet glass microscope slides to

prepare interphase nuclei samples for fluorescence in situ
hybridisation (FISH).

Quantitative real time-PCR
Total RNA from the whole body of B. glabrata adult snails

(,8–12 mm shell diameter) either unexposed (0 min) or exposed

was extracted individually by RNAzol RT (Molecular Research

Center, Inc.) according to the manufacturer’s manual. With this

reagent the contaminated residual DNA was eliminated as

previously described [45]. Quantitative RT-PCR was performed

by one-step reaction using Brilliant II SYBR green QPCR master

mix (Stratagene, Agilent). The validation method (ABI manufac-

turer’s instructions) and melting curve was optimized by using

different input RNA (four different sample dilutions) containing

ferritin, actin, Hsp 70 and myoglobin, a house keeping gene [45] to

confirm that the amplification efficiencies of both genes were equal

and contained a single peak at the expected temperature to

indicate target- specific amplification (data not shown). We chose

to use myoglobin as the housekeeping because it an abundant

transcript that is constitutively and uniformly expressed in all

tissues of B. glabrata irrespective of their susceptibility to the

parasite. While others prefer actin, in our hands, this transcript is

differentially regulated upon infection depending on whether or

not snails are resistant or susceptible to the parasite. Furthermore

actin is a nuclear motor protein and maybe used in moving

chromatin around after an infection and is not used as a control

gene in Q-PCR in studies interested in genome reorganization.

Using custom designed primers that were synthesized by Operon

Biotechnologies, the gene specific primers (GSPs) for Q-RT-PCR,

showing no cross hybridization to S. mansoni, were designed using

Primer-Blast algorithm in GenBank (Ta = 58uC). Twenty-five

microliters of each RT-PCR mixture contained 100 ng total

RNA, 12.5 ml Brilliant II SYBR green PCR master mix, 150 nM

of each gene specific primers (GSPs): actin, ferritin and Hsp 70
and 1 ml of blocking reverse transcriptase. Individual snail RNA

samples were run in triplicate, and all assays contained a no

template negative control to rule out non- specific amplification

from contamination in the buffers. The Q-RT-PCR data were

normalized using myoglobin (Mb) as housekeeping gene as

previously described (7). The sequences of each primer are: 1)

expression 2 hours after infection (A). No repositioning or change in expression is observed in the BS-90 strain snails (B). No evidence for the
relocation of the Hsp 70 gene loci and no induction of Hsp 70 expression were detected by qRT-PCR when the two snail lines were infected with
irradiated miracidia. Statistically significant differences, as assessed by two-tailed Student’s t-test, between normalized gene signal in each shell of
control nuclei compared with infected snail nuclei are indicated by a black asterisk (P,0.05). Student’s t-test between normalized gene signal in each
shell of NMRI snail nuclei compared with BS90 snail nuclei are indicated by a red asterisk (P,0.05). Error bars = S.E.M.
doi:10.1371/journal.pntd.0003013.g003
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Figure 4. Charts displaying the in vivo radial positioning and expression profile of B. glabrata ferritin gene in the interphase nuclei of
cells derived from NMRI (A) and BS-90 (B) snail strains, pre and post exposure to S. mansoni normal miracidia (top row of charts,
red) and attenuated irradiated miracidia (bottom row of charts, grey). B. glabrata snails were infected with miracidia, dissected, fixed, and
subjected to 2-D FISH or RNA was isolated and a q-RT-PCR was performed (middle chart). In the NMRI strain ferritin is repositioned in snails infected
with both normal and irradiated miracidia. However the gene is up-regulated only in snails infected with irradiated miracidia (A). Repositioning of
ferritin gene loci is observed in the BS-90 strain snails infected with normal and irradiated miracidia, and this is correlated with up-regulation of its
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actin (Acc. no. CO501282); actin-F 59-GTCTCCCACACTG-

TACCTATC-39, actin-R 59-CGGTCTGCATCTCGTTTTC-39,

2) ferritin (Acc. no. AW739595); ferritin –F 59-GGAGGAGAGA-

GAACATGC-39, ferritin-R 59-CACCAATCTGCTTGATGGAC-

39, 3) Hsp 70 (Acc. no. L44127); Hsp 70-F 59-AGGCGTCGA-

CATTCAGGTCTA-39, Hsp 70-R 59-TGGTGATGTTGTT-

GGTTTTACCA-39 and 4) myoglobin (Mb; Acc. no. U89283);

Mb-F 59-GATGTTCGCCAATGTTCCC-39 and Mb-R 59-AGC-

GATCAAGTTTCCCCAG-39 [35,45]. The transcript levels of

ferritin, actin and Hsp 70 during different time points following

exposure were normalized relative to myoglobin expression as

mentioned above. Fold change of gene expression were calculated by

the comparative Ct method with the formula indicated below [46]:

Fold difference~2{DDCt

~2
{ Ctgene, exposed{Ctmyoglobin, exposed

� �
{ Ctgene, unexposed{Ctmyoglobin, unexposed

� �h i

The gene fold change difference between unexposed and

exposed snail groups was compared by Student’s t-test, with P-

values ,0.05 (N = 10 for each group) showing differentially

expressed transcripts between the two groups that were significant.

In these experiments, we performed Q-RT-PCR, in triplicate,

from RNA samples isolated from 10 individual snails per time

point for each group with 2 biological replicates.

Fluorescence in situ Hybridisation
DNA probes for the B. glabrata genes for fluorescence in situ

hybridisation (FISH) were derived from clones of B. glabrata
bacterial artificial chromosome (BAC) libraries (BB02 stocks),

containing actin, ferritin, and Hsp 70 coding sequences [47].

FISH was performed as previously described with BAC DNA

being labelled with biotin using nick translation and visualised via

streptavidin conjugated to cyanine 3. After denaturation of the

sample and probe, slides were placed at 37uC overnight to

facilitate hybridisation [15,48].

Image analysis
Nuclei stained with 49,6-diamidino-2-phenylindole (DAPI) were

observed using the Olympus BX41 fluorescence microscope and

UPlanFLN 100x/1.30 oil immersion objective. Digital images were

captured using a grayscale digital camera (Digital Scientific UK) and

the Smart Capture 3 software (Digital Scientific UK). Fifty images of

nuclei for each gene (actin, ferritin, Hsp 70) were captured and the

position of the gene assessed using the erosion script analysis [30]

(Fig. 1) as described previously [15]. The computer analysis script

uses the grayscale images to assess the position and intensity of the

DNA and FISH signals. Statistical analyses were performed by using

unpaired, two-tailed Student’s t test.

List of gene accession numbers
B. glabrata actin Acc.no. CO501282, B. glabrata ferritin Acc.

No. AW73959, B. glabrata Hsp 70 Acc. No. L44127, B. glabrata
myoglobin Acc. No. U89283.
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