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New Clues to Understanding HIV Nonprogressors: Low Cholesterol
Blocks HIV Trans Infection

Vinayaka R. Prasad,a Michael I. Bukrinskyb

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USAa; Department of Microbiology, Immunology, and Tropical
Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USAb

ABSTRACT A small percentage of HIV-infected subjects (2 to 15%) are able to control disease progression for many years without
antiretroviral therapy. Years of intense studies of virologic and immunologic mechanisms of disease control in such individuals
yielded a number of possible host genes that could be responsible for the preservation of immune functions, from immune sur-
veillance genes, chemokines, or their receptors to anti-HIV restriction factors. A recent mBio paper by Rappocciolo et al. (G.
Rappocciolo, M. Jais, P. Piazza, T. A. Reinhart, S. J. Berendam, L. Garcia-Exposito, P. Gupta, and C. R. Rinaldo, mBio 5:e01031-
13, 2014) describes another potential factor controlling disease progression: cholesterol levels in antigen-presenting cells. In this
commentary, we provide a brief background of the role of cholesterol in HIV infection, discuss the results of the study by Rap-
pocciolo et al., and present the implications of their findings.

Understanding the genetic basis of natural resistance to HIV-1
is a major goal in the effort to control HIV. Previous studies

to identify and delineate host genetic variants responsible for
complete or partial resistance to HIV infection or disease progres-
sion have pointed to host genes involved in the HIV-1 replication
cycle (CCR5, CCR2b, chemokines), immune surveillance (major
histocompatibility complex class I) or restriction factors (mem-
bers of the apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like, family; tripartite motif-containing protein 5�;
and tetherin) (recently reviewed in reference 1). Such studies are
valuable, as they provide important clues to identifying the viral
and host targets for developing more efficacious therapies. The
recent report in mBio by Rappocciolo et al. (2) throws new light on
a molecule whose role in aiding and abetting HIV replication is
already known— cholesterol. That study shows that the level of
cholesterol in immune cells may be a determinant of HIV spread
within the body. While the underlying genetic basis of this is still
unknown, the study provides some important hints.

Cholesterol has been shown to be required for the entry or
fusion of many different viruses (3–5), and the list continues to
expand (6). The role of cholesterol in HIV replication has been
studied for over 10 years. Early reports demonstrated that choles-
terol depletion from virus-producing cells suppresses virus pro-
duction (7), whereas depletion of cholesterol from mature virions
or target cells inhibits virus-cell fusion and infection (8–11). This
dependence of HIV on host cell cholesterol was related to viral
assembly on cholesterol-rich lipid rafts of the plasma membrane
and the role of cholesterol and lipid rafts in membrane fluidity (7,
12, 13). Thus, reports that HIV actively controls the cholesterol
metabolism of the host cell came as little surprise. HIV, via its
protein Nef, stimulates cholesterol uptake and biosynthesis by ac-
tivating the transcription of sterol-responsive element binding
factor 2 (SREBF-2) and SREBF-2-regulated genes (14), and Nef
also inhibits the activity of the cellular cholesterol transporter
ATP-binding cassette A1 (ABCA1), thus reducing cholesterol ef-
flux from cells (15). In addition, Nef binds cholesterol and delivers
it to lipid rafts (16). Together, these effects lead to an increase in
intracellular cholesterol, an increase in lipid raft abundance, and
an increase in viral production and infectivity (17). Conversely,

depletion of cellular cholesterol by ABCA1 activation potently in-
hibits HIV replication (18–20).

The paper by Rappocciolo and colleagues describes another
role that cholesterol plays in HIV infection (2). Investigating the
mechanistic basis underlying the ability of a small group of HIV-
infected persons to control HIV infection for many years without
antiretroviral treatment, the authors compared antigen-
presenting cells (APCs) from nonprogressors (NPs) and progres-
sors (PRs) for the ability to trans infect susceptible CD4� T cells.
Trans infection is the process by which APCs such as dendritic
cells (DCs) or certain B cells can take up HIV-1 and participate in
enabling the infection of CD4� T cells (21). It is different from the
standard cell-to-cell infection (cis infection) in that the APCs are
not productively infected by HIV, so the virus they transduce to
target cells is the virus they have captured and preserved. How-
ever, trans infection is similar to cis infection in that the target cells
must express CD4 and coreceptor and the formation of a virolog-
ical synapse is involved. Previous study by Viglianti’s group dem-
onstrated that trans infection by DCs depends on cholesterol levels
and can be suppressed or stimulated by manipulating cellular cho-
lesterol content via stimulation of the nuclear receptors LXR and
PPAR� or the targeted knockdown of ABCA1, respectively (22).
Rappocciolo et al. found that APCs (DCs and B cells) from NPs,
when pulsed with HIV in vitro, did not trans infect autologous or
heterologous CD4� T cells, whereas cells from PRs efficiently
transferred the virus to susceptible cells. Importantly, the defect
was localized to APCs, as T cells from both NPs and PRs were
equally efficiently infected by cell-free virus.

In the authors’ search for a mechanistic basis for this finding,
they made a startling observation—the ability of APCs to trans
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infect CD4� T cells was directly correlated with APC cholesterol
content. In other words, cells from NPs had lower cholesterol than
cells from PRs. Replenishment of cholesterol in APCs from NPs
reversed the block to trans infection, and depletion of cholesterol
or inhibition of cholesterol biosynthesis with statins blocked the
ability of APCs from PRs to transfer HIV to susceptible cells. Of
note, the difference in APC cholesterol content between PRs and

NPs is likely due, at least in part, to genetic or epigenetic regula-
tion, as ABCA1 expression was higher in cells from NPs. These
findings support a previously proposed role for ABCA1 as an in-
nate anti-HIV-1 (and probably a more general antiviral) factor
(17). In this case, the decreased cholesterol levels controlled by
ABCA1 affect the ability of DCs and B cells to capture HIV and
transfer it to susceptible cells in a process that requires tight cell-

FIG 1 Schematic depicting the role of ABCA1 expression levels in APCs during HIV-1 trans infection. Individuals with genetically determined high levels of
ABCA1 gene expression have lower cholesterol levels than normal subjects in cells expressing ABCA1, such as DCs, whereas the cholesterol levels in cells where
ABCA1 is not expressed, such as T cells, are similar in these two groups. The paper by Rappocciolo et al. suggests that HIV disease in individuals with high ABCA1
expression progresses more slowly than in normal individuals. They demonstrate an absence of trans infection of CD4� T cells by DCs and B cells derived from
NPs (individuals with high ABCA1 expression levels). Cholesterol depletion has been shown to inhibit HIV uptake by DCs. Therefore, high ABCA1 expression
is expected to reduce HIV uptake and consequently trans infection. Trans infection proceeds through a virological synapse, which is formed with the participation
of lipid rafts. Lipid rafts are reduced when ABCA1 expression increases. See text for details.
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to-cell contact to form a virological synapse (Fig. 1). Jolly and
Sattentau previously showed that the formation of virological syn-
apses between HIV-infected and uninfected T cells requires the
integrity of lipid rafts (23). It is likely that these are the same
membrane structures as those involved in the assembly of infec-
tious HIV-1 particles. Thus, the mechanism of anti-HIV-1 activity
of ABCA1 may be the same in all cells and comes down to reduc-
tion of lipid raft abundance. The authors examined the ability of B
cells, isolated from PRs and NPs both before and after serocon-
version, to participate in trans infection and found that the inabil-
ity to trans infect existed prior to seroconversion, thus suggesting
that the inability of APC to trans infect is an innate property of
NPs. The specific genetic or epigenetic mechanisms underlying
the high ABCA1 expression in APCs from nonprogressors remain
to be uncovered. It is not unlikely that this is due to single nucle-
otide polymorphism in ABCA1 or genes encoding transcription
factors that specifically regulate ABCA1 expression in APCs.

Results of this study, while provocative and exciting, are only
the first step in understanding the mechanisms that operate in the
ability of some individuals to control HIV replication. It is most
likely that several mechanisms that engage different molecular
players are involved, and careful studies are needed to pinpoint
the contribution of cholesterol to each mechanism. It will be im-
portant to determine whether cholesterol levels of APCs can ex-
plain the differences between elite controllers (undetectable viral
loads), viremic controllers (plasma HIV-1 levels of 50 to 2,000
copies/ml), and viremic nonprogressors (variable viral loads but
stable CD4� T cell counts). Although the sample size in the study
by Rappocciolo et al. was small (n � 8), it is striking that the APCs
from all 8 NP individuals were unable to effect trans infection.

Some questions remain unanswered. The authors demon-
strated the dependence of trans infection on cholesterol by replet-
ing APCs with cholesterol prior to infection. However, since re-
pletion was performed prior to loading of the APCs with HIV, it is
unclear if cholesterol is required for the process of HIV-1 capture
by APCs, for the actual trans infection process, or for both. Trans
infection of CD4� T cells by APCs, in particular DCs, is known to
play a significant role in the mucosal transmission of HIV (24),
but its contribution to the posttransmission stage of disease pro-
gression remains unknown. It is possible that B cells play a role at
this step (25), but evidence for this remains scarce. It is also in-
triguing that the cholesterol levels in the recipient CD4� T cells
did not matter; rather, the cholesterol levels in the APCs con-
trolled trans infection. This conclusion was based on experiments
where the authors used 20% serum to culture T cells; given low
ABCA1 expression in T cells, such culture conditions could over-
load the cells with cholesterol, masking differences between cells
from PRs and those from NPs. High ABCA1 expression in non-
progressors may also be responsible for the restricted infection of
macrophages and other myeloid cells that are productively in-
fected with HIV. This may limit the viral reservoir (26), contrib-
uting to nonprogression. In any case, the possibility that levels of
ABCA1 expression may determine the control of HIV infection
deserves further study. The implications and translational oppor-
tunities are colossal, from preexposure prophylaxis to microbi-
cides to clinical maintenance of HIV-infected subjects.
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