
Himmelfarb Health Sciences Library, The George Washington University
Health Sciences Research Commons
Microbiology, Immunology, and Tropical Medicine
Faculty Publications Microbiology, Immunology, and Tropical Medicine

2014

BioClojure: A functional library for the
manipulation of biological sequences
Jordan L. Plieskatt
George Washington University

Gabriel Rinaldi
George Washington University

Paul J. Brindley
George Washington University

Xinying Jia
QIMR Berghofer Medical Research Institute, QLD, Australia

Jeremy Potriquet
QIMR Berghofer Medical Research Institute, QLD, Australia

See next page for additional authors

Follow this and additional works at: https://hsrc.himmelfarb.gwu.edu/smhs_microbio_facpubs

Part of the Medical Immunology Commons, and the Medical Microbiology Commons

This Journal Article is brought to you for free and open access by the Microbiology, Immunology, and Tropical Medicine at Health Sciences Research
Commons. It has been accepted for inclusion in Microbiology, Immunology, and Tropical Medicine Faculty Publications by an authorized
administrator of Health Sciences Research Commons. For more information, please contact hsrc@gwu.edu.

Recommended Citation
Plieskatt, J., Rinaldi, G., Brindley, P.J., Jia, X., Potriquet, J. et al. (2014). BioClojure: A functional library for the manipulation of
biological sequences. Bioinformatics,

https://hsrc.himmelfarb.gwu.edu?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/smhs_microbio_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/smhs_microbio_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/smhs_microbio?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/smhs_microbio_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/672?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hsrc@gwu.edu

Authors
Jordan L. Plieskatt, Gabriel Rinaldi, Paul J. Brindley, Xinying Jia, Jeremy Potriquet, Jeffrey M. Bethony, and
Jason Mulvenna

This journal article is available at Health Sciences Research Commons: https://hsrc.himmelfarb.gwu.edu/smhs_microbio_facpubs/
120

https://hsrc.himmelfarb.gwu.edu/smhs_microbio_facpubs/120?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/smhs_microbio_facpubs/120?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_microbio_facpubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages

BioClojure: A functional library for the manipulation of

biological sequences.

Jordan Plieskatt 1,2, Gabriel Rinaldi 1,2, Paul J Brindley 1,2, Xinying Jia 3,
Jeremy Potriquet 3, Jeffrey Bethony 3, and Jason Mulvenna 3,4, ∗

1Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health

Sciences, George Washington University, Washington, DC
2Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences,

George Washington University, Washington, DC
3QIMR Berghofer Medical Research Institute, Infectious Disease and Cancer, Brisbane,

Queensland, Australia
4The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia

ABSTRACT

Motivation: BioClojure is an open-source library for the manipulation

of biological sequence data written in the language Clojure.

BioClojure aims to provide a functional framework for the processing

of biological sequence data that provides simple mechanisms for

concurrency and lazy evaluation of large data sets.

Results: BioClojure provides parsers and accessors for a range of

biological sequence formats, including UniProtXML, Genbank XML,

fasta and fastq. In addition it provides wrappers for key analysis

programs, including BLAST, SignalP, TMHMM and InterProScan, and

parsers for analyzing their output. All interfaces leverage Clojure’s

functional style and emphasize laziness and composability, so

that BioClojure, and user-defined, functions can be chained into

simple pipelines that are thread-safe and seamlessly integrate lazy

evaluation.

Availability: BioClojure is distributed under the Lesser GPL

(LGPL) and the source code is freely available from GitHub

(https://github.com/s312569/clj-biosequence).

Contact: jason.mulvenna@qimr.edu.au

1 INTRODUCTION

Functional programming is a programming style that treats
computation as the evaluation of mathematical functions (Hudak,
1989). In its purest form, functional programming removes the
need for variable assignment by using immutable data structures
that eliminate the use of state and side-effects (Backus, 1978).
This ensures that functions will always return the same value given
the same input. This greatly simplifies debugging and testing as
individual functions can be assessed in isolation regardless of a
global state. Immutability also greatly simplifies concurrency and
facilitates leveraging of multi-core computing facilities with little
or no modifications to functionally written code. Accordingly, as a
programming style, functional programming offers advantages for
software development, including (a) brevity, (b) simple handling
of concurrency and (c) seamless integration of lazy evaluation,
simplifying the handling of very large datasets. Clojure is a Lisp

∗to whom correspondence should be addressed

variant that encourages a functional style of programming by
providing immutable data structures, functions as first-class objects
and uses recursive iteration as opposed to state-based looping
(Hickey, 2008). Clojure is built on the Java Virtual Machine (JVM)
and thus applications developed using BioClojure can be compiled
into Java byte code and run on any platform that runs the JVM.
Moreover, libraries constructed using Clojure can be called in Java
programs and, conversely, Java classes and methods and can be
called from Clojure programs, making available a large number
of third-party Java libraries. BioClojure aims to leverage the tools
provided by Clojure to provide a functional interface with biological
sequence data and associated programs. BioClojure is similar in
intent to other bioinformatics packages such as BioPerl (Stajich
et al., 2002), BioPython (Cock et al., 2009), Bio++ (Dutheil et al.,
2006) and BioJava (Prlić et al., 2012), but differs from these
bioinformatics software libraries in its embrace of the functional
style. With the decreasing cost of biological analyses, for example
next generation sequencing, biologists are dealing with greater
amounts of data and BioClojure is an attempt to provide tools,
emphasizing concurrency and lazy evaluation, for manipulating this
data.

2 METHODS

BioClojure source code and extensive documentation is available via GitHub

(https://github.com/s312569/clj-biosequence). The library is available as a

Java jar file from Clojars (https://clojars.org/clj-biosequence) and can be

easily incorporated into Clojure projects using lein (http://leiningen.org/).

BioClojure is organized into name-spaces (modules) each either providing

accessing to a particular sequence format, providing a wrapper to key

programs, BLAST and SignalP, or providing other functionality, for example

indexing and biological alphabets. When designing functions contained

within BioClojure, efforts have been made to maintain laziness and

composability. This, in combination with the Clojure threading macros,

facilitates the construction of analysis pipelines that can process sizeable

files using minimal memory.

2.1 The core module

The core module provides core functions such as DNA and protein alphabets

as well as translation, key accessors and file functions. More importantly

it establishes a framework for parsing sequence files using the functions

1© The Author(s) 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.

Associate Editor: Dr. Jonathan Wren

 Bioinformatics Advance Access published May 2, 2014
 at G

eorge W
ashington U

niversity on M
ay 8, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

‘bs-reader’ and ‘biosequence-seq’. Almost every module in BioClojure

implements these functions to access its particular sequence format or type

of data. When used in combination with the in-built Clojure macro ‘with-

open’, these functions provide lazy access to on-disk data. For example, a

very simple pipeline to translate a file of nucleotide sequences in six-reading

frames would use these functions in the following way in the REPL:

user> (with-open [r (bs-reader fasta-file)]

(->> (biosequence-seq r)

(mapcat #(six-frame-translation %))

realized?))

false

This code provides a lazy sequence of fasta protein sequences

representing the six-frame translation of nucleotide sequences from ‘fasta-

file’. The final call to ‘realized?’ merely illustrating the lazy nature of the

calculation. The resulting sequences can be sent to file using the BioClojure

function ‘biosequence->file’ or further processed using BioClojure and/or

user-defined functions. Using immutable objects and stateless iteration can

lead to simple and easily understandable code. A simple example of this is

the following code which returns counts for biological process GO terms

from secreted proteins in the UniProt Human proteome dataset:

(with-open [r (bs-reader up-hs-proteome)]

(->> (biosequence-seq r)

(filter #(some (fn [x] (= "Secreted"

(:text x)))

(subcellular-location %)))

(mapcat bp-go-terms)

frequencies))

{"neurotrophin TRK receptor signaling pathway"

36,

The defined interfaces of BioClojure are designed to be lazy and

composable in this way and thus more complex examples of these simple,

lazily-evaluated pipelines can be developed.

2.2 Sequence formats

At present, BioClojure supports sequence data formatted as Uniprot

XML, Genbank XML FASTA, and FASTQ. For each format, apart

from parsers, BioClojure provides accessors specific to that format (see

https://github.com/s312569/clj-biosequence for detailed documentation).

BioClojure also provides functions for remote searching and sequence

retrieval from UniProt and GenBank. For mapping of identification numbers,

BioClojure provides the ‘id-convert’ function which uses the UniProt

accession mapping service to convert accession numbers from one database

format to another. Integration of diverse file formats with the structure

provided by the core module is implemented using Clojure protocols and

so implementation of modules for new formats is facile, with additional

formats, in particular GFF and GTF, expected to be supported in the near

future.

2.3 Application wrappers

In addition to sequence data, BioClojure also provides wrappers for running

BLAST, SignalP, THMHH and Interproscan as well as parsers for their

output. Once again, integration of these tools with BioClojure emphasizes

lazy evaluation and composability, which simplifies integration of the tools

with other parts of BioClojure.

2.4 Persistence

The ‘index‘ module provides functions for producing compressed and

indexed files. An indexed file implements ‘biosequence-seq‘ and thus can

be used the same way as described above, but without the requirement for

using ‘with-open‘ or ‘bs-reader’. Indexed files also provide rapid random

access to indexed sequences using the ‘get-biosequence’ function.

2.5 Concurrency

One of the primary motivations for using Clojure is the built-in support for

concurrent operations. One simple example of this support is the ‘pmap’

function. The Clojure function ‘map’ applies a function serially to a list of

inputs, returning a list of the outputs, ‘pmap’ performs the same operations

using multiple threads. If the computational cost of the applied function

outweighs the coordination costs significant performance gains are possible,

as shown below using the SwissProt database:

user> (time (with-open [r (bs-reader swissprot)]

(last (map protein-charge

(biosequence-seq r)))))

"Elapsed time: 101232.610534 msecs"

5.778330187793381

user> (time (with-open [r (bs-reader swissprot)]

(last (pmap protein-charge

(biosequence-seq r)))))

"Elapsed time: 30552.548286 msecs"

5.778330187793381

In practice ‘pmap’ initiates a limited number of threads, based on the

number of cores, so for very large datasets, or asynchronous calls, a finer

grained control over the number of threads and their behaviour can be

obtained using Clojure’s software transactional memory, agent and atom

systems.

3 CONCLUSION

BioClojure is a functional software library specifically designed

for parsing and processing biological sequence data. It provides

a lazy and thread-safe framework for accessing and streaming

this data while using minimal amounts of memory. Presently,

we use the library extensively for the annotation of nucleotide

and peptide sequences arising from next generation sequencing

and the proteomic analysis of complex protein mixtures. We plan

to extend the functionality of the library soon by incorporating

modules for phylogenetic and proteomic analyses, and we welcome

contributions from the community.

ACKNOWLEDGEMENT

Funding: This research was supported using funding from the

National Health and Medical Research Council, Australia (grant

number 1051627) as well as award R01CA155297 from the

National Cancer Institute.

REFERENCES

Backus, J. (1978). Can programming be liberated from the von Neumann style?: a

functional style and its algebra of programs. Commun ACM, 21(8), 613–641.

Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg,

I., Hamelryck, T., Kauff, F., Wilczynski, B., et al. (2009). Biopython: freely

available Python tools for computational molecular biology and bioinformatics.

Bioinformatics, 25(11), 1422–1423.

Dutheil, J., Gaillard, S., Bazin, E., Glmin, S., Ranwez, V., Galtier, N., and Belkhir,

K. (2006). Bio++: a set of C++ libraries for sequence analysis, phylogenetics,

molecular evolution and population genetics. BMC Bioinformatics, 7, 188.

Hickey, R. (2008). The clojure programming language. In Proceedings of the 2008

symposium on Dynamic languages, page 1. ACM.

Hudak, P. (1989). Conception, evolution, and application of functional programming

languages. ACM Comput Surv (CSUR), 21(3), 359–411.

Prlić, A., Yates, A., Bliven, S. E., Rose, P. W., Jacobsen, J., Troshin, P. V., Chapman,

M., Gao, J., Koh, C. H., Foisy, S., et al. (2012). Biojava: an open-source framework

for bioinformatics in 2012. Bioinformatics, 28(20), 2693–2695.

Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A., Dagdigian, C.,

Fuellen, G., Gilbert, J. G., Korf, I., Lapp, H., et al. (2002). The bioperl toolkit: Perl

modules for the life sciences. Genome Res, 12(10), 1611–1618.

2

 at G
eorge W

ashington U
niversity on M

ay 8, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

	Himmelfarb Health Sciences Library, The George Washington University
	Health Sciences Research Commons
	2014

	BioClojure: A functional library for the manipulation of biological sequences
	Jordan L. Plieskatt
	Gabriel Rinaldi
	Paul J. Brindley
	Xinying Jia
	Jeremy Potriquet
	See next page for additional authors
	Recommended Citation
	Authors

	tmp.1399555841.pdf.FOhrM

