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ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and world-
wide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small
SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the
predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid.
CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa,
the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft
tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are ex-
tremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of
both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is
derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition
of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish
the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were
associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases
of cross-continent imports likely driven by human migrations.

IMPORTANCE With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in un-
derstanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and
dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus
CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-
Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition
from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a
widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success
of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined
importance of these factors for the success of CA-MRSA.
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A remarkable change was observed in the epidemiology of
methicillin-resistant Staphylococcus aureus (MRSA) in the

late 1990s with the emergence of new MRSA lineages causing in-
fections in the community in otherwise healthy individuals with
no reported contact with the health care system (1–4). Within a
very few years, community-acquired MRSA (CA-MRSA) strains
were observed worldwide, involving a number of different geo-
graphically distinct lineages, including the Southwest Pacific clone
(sequence type 30 [ST30], associated with the staphylococcal cas-
sette chromosome mec element [SCCmec] type IV [ST30-IV]) in
East Asia and Oceania (5–8), USA400 (ST1-IV) and USA300
(ST8-IV) in the United States (9, 10), and the European CA-
MRSA clone (ST80-IV) in Europe, North Africa, and the Middle
East (5, 11–14).

The European CA-MRSA clone belonging to clonal complex
80 (CC80) was recognized first in Denmark in 1997 as EDK-97
(15) and then soon after in Finland, Greece, and France (16–18),
and it subsequently spread to become the predominant CA-
MRSA lineage throughout Europe (19–22). Retrospectively, the
first known isolate has been traced back to 1993 in Denmark (23,
24). Epidemiological data suggested that the clone may have had
its origin outside Europe, as many of the European CA-MRSA
cases in Scandinavia were associated with import by individuals
with relations to the Middle East and Africa (24, 25). Concur-
rently, multiple reports showed that the European CA-MRSA
clone was prevalent in North Africa and the Middle East (13, 14,
26–28).

The typical molecular features of the European CA-MRSA
clone include the presence of a type IVc SCCmec, a �Sa2 prophage
carrying the lukS and lukF genes, encoding the Panton-Valentine
leukocidin (PVL) (referred to as lukS/F-PV genes), and an agr type
III quorum-sensing system. Resistance to fusidic acid (fusB), tet-
racycline [tet(K)], and kanamycin/amikacin (aadK and aphA) are
all strongly associated with the European CA-MRSA clone. These
antimicrobials are widely used topical agents for skin infections
(29, 30). It is notable that CC80 isolates have historically been
found to be predominantly methicillin resistant, and a recent Eu-
ropean multicenter study showed that they account for �30% of
all CA-MRSA isolates (31). In contrast, CC80 isolates are rarely
found in cases of S. aureus bacteremia or among healthy carriers
(28, 31–37).

PVL-positive CC80 MSSA isolates have recently been reported
from France and from countries in sub-Saharan Africa, including
Gabon, Nigeria, São Tomé e Príncipe, Togo, and Uganda (38–43).
These reports could indicate a geographically larger dissemination
of CC80 with a distinct cluster of methicillin- and fusidic acid-
susceptible CC80 isolates. This raises questions about the origin of
the European CA-MRSA lineage, its dissemination, and the selec-
tive forces driving its epidemic expansion.

The origin, epidemiology, and dispersal of CA-MRSA have
been primarily based on localized epidemiological studies or na-
tional surveillance monitoring. Whole-genome sequencing
(WGS) has greatly expanded the understanding of bacterial evo-
lution and has been used to investigate health care-associated
clones such as ST22 and ST239 and the livestock-associated ST398
lineage (44–46) and to trace and investigate the diversification of
USA300 in the community (47). In the current study, we applied
WGS to an extensive and geographically diverse collection of
MSSA and MRSA CC80 isolates collected over almost two decades

to reconstruct the origin and evolution of the European CA-
MRSA lineage.

RESULTS
Phylogenetic relationship of the CC80 complex. We determined
the genome sequences of 97 CC80 S. aureus isolates (74 MRSA and
23 MSSA strains) covering the period of 1993 to 2010 obtained
from 21 countries in Africa, Europe, the Middle East, and Malay-
sia (see Table S1 and Fig. S1 in the supplemental material). The
genomic DNA was sequenced to an average depth of �90-fold
(33- to 240-fold) coverage using the ST80 11819-97 genome as a
reference.

Phylogenetic analysis determined S. aureus CC1 to be the out-
group most closely related to CC80 when the CC80 sequence was
compared to published genome sequences representing CC1,
CC5, CC8, CC30, CC45, CC59, CC93 and CC398 (data now
shown); therefore, S. aureus MW2 (CC1) was subsequently used
for rooting. Once mobile genetic elements were excluded, a total
of 3,493 single nucleotide polymorphisms (SNPs) identified
within the conserved core genome were used to reconstruct the
phylogenetic structure of the CC80 lineage. Neighbor nets were
inferred in order to detect putative recombination signatures that
would result in networks rather than trees. No major splits were
found. However, the pairwise homoplasy index (PHI) test pre-
dicted significant evidence for recombination events (P � 0.001).
Based on visual inspection, contiguous SNPs consisting of three or
more SNPs, mirroring homologous recombination, were de-
tected. A total of 32 independent possible recombination events
involving 298 SNPs, ranging from 3 to 24 consecutive SNPs, were
identified and removed (see Table S2 in the supplemental mate-
rial). A rerun of the PHI test on the pruned data set detected no
traces of recombination (P � 0.142).

After this preliminary stage, the phylogenetic content of the
SNP data set was evaluated with likelihood mapping analyses.
With the majority of all quartet points localized in the central
region (74.1%), the result pointed to a rather mild phylogenetic
signal with a large degree of star-like evolution in the CC80 lineage
(48). Thus, the phylogeny seemed to be resolved only in certain
parts of the tree (see Fig. S2 in the supplemental material).

The rooted maximum-likelihood phylogeny identified two
distinct clades: a basal clade of 13 MSSA isolates mostly from
sub-Saharan Africa and a highly polytomic derived clade with 84
isolates that contained the European CA-MRSA isolates from Eu-
ropa, North Africa, and the Middle East (Fig. 1). Four French
isolates clustered in the sub-Saharan basal clade. For two of these,
89-HT20050374-fra-2005 and 91-HT20060859-fra-2006, epide-
miological information could be obtained, and in both cases they
were linked to sub-Saharan Africa either by military service or by
ethnicity.

A total of four canonical SNPs distinguished the basal sub-
Saharan African clade from the derived clade with one nonsyn-
onymous SNP (reference genome position 2130486) positioned
in the agr receptor gene agrC, one intergenic SNP (position
2480591), and two synonymous SNPs (positions 225883 and
431761). The SNP in agrC resulted in an amino acid change
(L184I) in transmembrane region 6 (TM6) (49, 50) within the
sensor domain of the AgrC receptor, to which the agr autoinduc-
ing peptide (AIP) binds. Seven spa types were observed. spa type
t044 dominated the derived clade (73/84), whereas spa types t934
and t5941 were found exclusively in isolates (12/13) of the basal
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FIG 1 Rooted maximum-likelihood phylogeny of 97 CC80 isolates based on 3,493 SNPs, including 739 parsimony-informative SNPs. Strains are labeled with
isolate number, isolate ID, country of origin, and year of sampling. Countries of origin: alg, Algeria; fa, France; swi, Switzerland; bel, Belgium; jo, Jordan: den,
Denmark; swe, Sweden; mal, Malaysia; kuw, Kuwait; spa, Spain; ge, Germany; gr, Greece; fin, Finland; om, Romania; se, Serbia; slo, Slovenia; pol, Poland; tun,
Tunesia; tog; Toga; nig, Nigeria; uga, Uganda; gab, Gabon. Columns 1 to 3 show the presence of the methicillin resistance determinant mecA, the fusidic acid
resistance determinant fusB, and the tetracycline resistance determinant tet(K). The presence and absence of genetic elements are indicated by black and white,
respectively. Gray bars in the SCCmec column indicate remnants of SCC in MSSA isolates, and hatched bars in the tet(K) column denote the pT181 and pT45
plasmids.

Origin and Spread of the European CA-MRSA Lineage
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clade. The remaining isolate in the basal clade carried spa type
t376, similar to two isolates in the derived clade.

Dating analysis and demographic expansion. In order to in-
vestigate if the S. aureus CC80 lineage corresponded to a measur-
ably evolving population (51), we plotted the genetic distance
from the common ancestor against sampling time (see Fig. S3 in
the supplemental material). A significant correlation was ob-
served, indicating that CC80 is a measurably evolving population.
Using this basic approach, the time to the most recent common
ancestor (TMRCA) of the CC80 lineage was dated to 1988, with a
mean nucleotide substitution rate of 1.39 � 10�6 substitution per
site per year.

In a second step, we applied the more sophisticated Bayesian
coalescent method using both relaxed and strict molecular clock
models to infer the phylogeny and the rate of evolution of the
CC80 complex and its sublineages. The BEAST package is based

on “time” trees, i.e., oriented toward time-measured phylogenies
that differ from those obtained via maximum-likelihood ap-
proaches. However, the phylogeny obtained using the Bayesian
method (Fig. 2A) did not differ in topology from the maximum-
likelihood tree (Fig. 1). Interestingly, a DensiTree representation
of the Bayesian analysis strongly highlights, in both a graphical
and qualitative manner, the low topological support of the most
recent divergent clade, with fuzzy connections, whereas the deep-
est nodes of the tree display much stronger support.

The mean nucleotide substitution rate within CC80 using the
Bayesian coalescent method was 1.29 � 10�6 substitutions per site
per year (95% highest posterior densities [HPDs], 1.10 � 10�6 to
1.51 � 10�6), which varied marginally depending on the choice of
tree prior (see Table S3 in the supplemental material). Given the
rate of molecular evolution, we were able to extrapolate the
TMRCA for the full lineage and for the derived clade. According to

FIG 2 Bayesian analyses of the CC80 complex. (A) DensiTree representation of the Bayesian coalescent trees using a strict clock model based on 3,493 SNPs.
Tips of the trees are constrained by year of isolation; the time scale is shown at the top. (B) Posterior estimates of the TMRCA for the derived and sub-Saharan
African strains under the strict clock model. (C) Effective population size through time (Bayesian skyline) of the S. aureus CC80 lineage. The shaded area
represents the 95% confidence intervals, and the arrows point to potential socioeconomic events that might have impacted the demography of the MRSA
population.
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the best model under the strict clock (constant population size; see
the Bayes factor analysis in Table S3 in the supplemental material),
the TMRCA of the 97 clones was estimated to 1982 (95% HPDs,
1986 to 1978). The posterior estimates of the TMRCA for the
derived strains confirmed that the expansion from sub-Saharan
Africa started two to three years later (Fig. 2B). Importantly, the
TMRCA of the sub-Saharan lineages overlapped the TMRCA of
the full lineage, confirming the ancestral state of the sub-Saharan
African samples. Multiple independent runs using the relaxed
clock model (lognormal uncorrelated) were executed; however,
those runs were poorly mixing and are not presented here. This
situation might reflect the departure from a strict clock model
suggested in Fig. S3 in the supplemental material.

The Bayesian skyline plot (Fig. 2C) indicated a sharp increase
of the effective CC80 population size starting in the early 1990s. At
this early stage, the population size increased by two orders of
magnitude, followed by a secondary mild expansion (in year
2000) and a more recent stepwise slow decrease. Though Bayesian
skylines should not be overinterpreted, it is worth noting that both
the demographic expansions and the timings are in good agree-
ment with the European CA-MRSA epidemiology reported in the
literature in Europe, North Africa, and the Middle East.

SCCmec acquisition and diversity. Seven distinct SCCmec IV
elements were found among the 74 MRSA isolates (SCCmec IVc1

to IVc7) (see Fig. S4 in the supplemental material), with the pre-
dominant type, IVc1, having a length of 37 kb. Five of these sub-
types (IVc1 to IVc5) were found in 71 of the 74 isolates and had
~29 kb of conserved content. The remaining two subclasses (IVc6

and IVc7) had major deletions in the SCCmec region spanning the
J1 and J2 regions (see Fig. S4 in the supplemental material), but
SNPs in the 5= end of SCCmec clustered these with SCCmec types
IVc1 to IVc5 (data not shown). A comparison of types IVc1 to IVc5

with six non-CC80 SCCmec type IV variants (IVa, IVb, IVc [n �
2], IVe, and IVg) identified 244 SNPs, and a phylogenetic analysis
showed that the CC80 isolates clustered distinctly together near
the two SCCmec type IVc variants and were distant from the other
four variants (see Fig. S5 in the supplemental material). Only four
SNPs were identified to differentiate subtypes IVc1 to IVc5 among
the 71 isolates. Two MSSA isolates from the derived clade had
SCCmec remnants. Comparison of their remnant regions with
SCCmec IVc1 to IVc5 revealed a high degree of similarity within
the conserved regions (data not shown).

All isolates except SCCmec IVc7 and Remnant2 shared an iden-
tical ~4,200-bp region integrated into orfX (see Fig. S4 in the sup-
plemental material); however, no other MSSA isolates in the col-

lection contained SCCmec remnants. These results strongly
suggest that the IVc SCCmec element was acquired only once and
subsequently underwent multiple unrelated deletions.

Fusidic acid resistance determinants. In 69 of the 71 fusidic
acid-resistant strains, all from the derived clade, the resistance was
due to fusB located on the plasmid p11819-97 (52). Analysis of the
p11819-97 diversity in comparison with that of the two plasmids
(pWBG753 and SAP103A) that had the highest degree of homol-
ogy to p11819-97 identified 309 SNPs (see Fig. S5C in the supple-
mental material) and showed the p11819-97 plasmid to be highly
clonal. A total of 28 SNPs were observed in the p11819-97 se-
quences. Similar to the SCCmec element, this strongly suggests
that the p11819-97 plasmid was acquired once in the CC80 back-
ground. The p11819-97 plasmid was closed by insertion of
~800 bp encoding a TnpA transposase and found to contain only
two resistance determinants (fusB and blaZ). One fusidic acid-
susceptible isolate (88-HT20060002-fa-2005) carried p11819-97
with a complete fusB gene with no mutations in the gene or pro-
moter region. Subsequent microarray analysis and susceptibility
testing confirmed the genotypic carriage of fusB associated with a
sensitive phenotype. Three isolates had mutations associated with
fusidic acid resistance in the fusA gene (see Table S1 in the supple-
mental material).

In total, 24 different resistance profiles were detected (see Ta-
ble S1 in the supplemental material). Major differences were
found between the basal MSSAs and the MSSAs and MRSAs
within the derived clade (Table 1). Regarding the MRSAs in the
derived clade, 88% were resistant to fusidic acid and 77% to tet-
racycline. The most common phenotype, found in 44 of the 74
MRSA isolates, displayed resistance to fusidic acid, kanamycin,
and tetracycline (FKT). Resistance to erythromycin and clinda-
mycin was observed in 18% and 15% of the isolates, respectively.
Single isolates were resistant to either mupirocin or rifampin.

Resistance determinants. The tet(K) gene was found in all 69
tetracycline-resistant isolates and in one susceptible isolate (88-
HT20060002-fa-2005). No mutations in the gene or promoter
region of this sensitive isolate were found, and concurrent mi-
croarray analysis and susceptibility testing further confirmed
these observations. The tet(K) gene was found in three different
plasmids: the 4.4-kb plasmid pT181 (53) and two novel plasmids,
pT45 and pT49 (4.5 kb and 4.9 kb). pT181 was exclusively associ-
ated with the basal clade, whereas pT49 was exclusive to the de-
rived clade. pT45 was found in only two isolates from Tunisia
(derived clade) (Fig. 1). The pT49 and pT45 plasmids appeared to
be derivatives of pT181 and could be explained by insertion of a

TABLE 1 Phenotypic resistance of CC80 isolatesa

Clade and
organism (n)

No. (%) of isolates

Sensitive

Resistant to:

Cef Ery Clin Fus Tet Kan Mup Nor Rif

Basal
MSSA (13) 6 (46) 0 (0) 0 (0) 0 (0) 0 (0) 7 (54) 0 (0) 0 (0) 0 (0) 0 (0)

Derived
MSSA (10) 0 (0) 0 (0) 2 (20) 1 (10) 6 (60) 5 (50) 1 (10) 0 (0) 0 (0) 1 (10)
MRSA (74) 0 (0) 74 (100) 15 (20) 14 (19) 65 (88) 57 (77) 68 (92) 1 (1) 4 (5) 0 (0)

Total (97) 6 (6) 74 (76) 17 (18) 15 (15) 71 (73) 69 (71) 69 (71) 1 (1) 4 (4) 1 (1)
a Antimicrobial-resistant CC80 isolates from the basal and derived clades in relation to mecA status. Cef, cefoxitin; Ery, erythromycin; Clin, clindamycin; Fus, fusidic acid; Tet,
tetracycline; Kan, kanamycin; Mup, mupirocin; Nor, norfloxacin; Rif, rifampin.
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transposase in pT181 (pT49) and subsequent deletion of a plas-
mid recombination gene (mobE), leading to pT45.

SCCmec subtypes IVc1 to IVc3 and Remnant1 (n � 68) (see
Fig. S4 in the supplemental material) all contained the aadK
[ant(6)-Ia] and aphA [aph(3=)-III] genes, which are responsible
for aminoglycoside resistance (they were kanamycin/amikacin re-
sistant but susceptible to tobramycin and gentamicin). These
genes were absent in the MRSA isolate 7-ST20080342-alg-2008,
which carried the aac(6’)-aph(2’’) gene, associated with resistance
against all aminoglycosides.

Panton-Valentine leukocidin. Ninety-six of the isolates car-
ried the �Sa2 prophage integrated in the same site of the chromo-
some. In 95 of these isolates, �Sa2 harbored lukS/F-PV, and one
had a deletion of lukS/F-PV. In addition, isolate 47-ST20081834-
fa-2008 carried remnant parts of a �Sa2 prophage (see Table S1 in
the supplemental material). Comparison of the 96 CC80 �Sa2
prophages to those from other CA-MRSA lineages (CC1, CC8,
CC30, CC59, and CC93) showed that the CC80 �Sa2 prophages
are distinct and highly clonal (see Fig. S5C in the supplemental
material). In contrast to both the SCCmec and the fusidic acid
resistance plasmid (p11819-97), the �Sa2 prophage seems to be
an ancestral trait of the CC80 lineage.

Accessory genome. The core and accessory genome of the
CC80 isolates comprised 2,151 and 1,575 gene families, respec-
tively. Within the accessory genome, a total of 669 gene families
were found only in single isolates. Of the 906 remaining gene
families, 27 were associated with the derived clade, all of which
were related to the SCCmec region (see Fig. S6 in the supplemental
material). No gene families were found to be associated with loss
in the derived clade.

DISCUSSION

Combining phylogenomics, molecular clock analyses, and epide-
miological data provided a compelling depiction of the emergence
of CC80 from its proposed origins in sub-Saharan Africa in the
early 1980s to its status as the dominant CA-MRSA clone in Eu-
rope today. Bayesian and maximum-likelihood phylogenetic
analyses of this measurably evolving population (Fig. 1 and 2A;
also, see Fig. S3 in the supplemental material) showed a distinct
basal clade primarily consisting of sub-Saharan MSSA isolates and
a derived clade dominated by MRSA isolates from Europe, North
Africa, and the Middle East.

The molecular clock analyses as well as the phylogenetic struc-
ture of the Bayesian tree are supported by known human migra-
tion patterns. The coalescence analyses indicate that the TMRCA
of the CC80 lineage dated to the early 1980s, with epidemiological
data suggesting a geographically confined dissemination in west-
ern sub-Saharan Africa. Traditionally, movements of pastoralists,
such as the Fula or Fulani tribe, have shaped these movements
across the region (54), and this is consistent with dissemination of
the CC80 lineage. Though the majority of African migration is
intracontinental, many of the countries on the Guinea coast tend
to have a higher rate of international mobility, with France being
the most common destination country (55), which may explain
the presence of the methicillin-sensitive isolates in France. Re-
cently, an intensification of migratory movement from the Upper
Guinea coast, along the coast, or through the Sahara (Sahel), on
the part of migrants pushing north into Europe due to economic
crisis and political conflicts has also been observed (55–57). The
TMRCA of the derived European CA-MRSA clade dated to the

mid-1980s, and this is consistent with increased migration from
West Africa to Europe. It also matches increased transnational
movement from Europe to West Africa through networks estab-
lished over the years by past migration (56, 57) as well as by a
thriving tourism industry in several parts of this region (58). Such
migration-associated dissemination has also been described for
other human pathogens, such as Helicobacter pylori, Mycobacte-
rium tuberculosis, Mycobacterium leprae, and Salmonella enterica
serovar Typhi (59–62).

Furthermore, the star-like phylogeny of the derived clade sug-
gests a rapid expansion in the early 1990s, reflecting the dissemi-
nation of CC80 around the Mediterranean and the rest of Europe
after the introduction of the progenitor strain. Despite the general
lack of phylogenetic structure, a small group of older Danish and
Tunisian isolates formed a distinct subcluster within the CA-
MRSA clade, representing an unsuccessful subpopulation not
commonly found today.

The first reported case of infection with the European CA-
MRSA was a 1993 community-associated skin and soft tissue in-
fection in Denmark (23, 24). While observed in Denmark through
the 1990s, it was first described outside Denmark after 1997 in
multiple countries around Europe (16–21). Our analysis of the
genotypic data shows a highly unresolved population structure in
the derived CA-MRSA clade. This indicates a rapid clonal expan-
sion that could easily have been overlooked in countries with no
systematic surveillance or collection of community MRSA. Sur-
veillance data from Denmark, Norway, and the Netherlands indi-
cate an increased prevalence of the CA-MRSA clone after 2001
(19, 21, 24, 63). Together, these data are in agreement with the
skyline plot (Fig. 2C), which indicates that the European CA-
MRSA spread rapidly across Europe, North Africa, and the Middle
East prior to 1993 and had a smaller secondary increase in the
effective population size around the turn of the century.

Our data suggest that the acquisition of highly specific canon-
ical SNPs as well as resistance to methicillin, kanamycin/amikacin,
and fusidic acid coincided with the emergence of the CA-MRSA
clone and that these traits could be essential factors driving its
expansion. Analysis of the accessory genome showed that these
features were absent in the basal clade of the phylogenetic tree but
prevalent in the derived clade. Interestingly, various mutations in
the agrC gene have been documented to be beneficial for S. aureus
to overcome reduced fitness often caused by larger mobile genetic
elements or mutations causing reduced fitness (64, 65). A re-
cent study of the S. aureus identified an SNP (G55R) in agrC
among most contemporary CC30 isolates distinguishing them
from historic CC30 isolates of phage type 80/81 or the southwest
Pacific CA-MRSA clone. In most cases, these contemporary iso-
lates had reduced levels of RNAIII expression; such variants were
associated with reduced lethality in a murine bacteremia model
(66), and no studies have specifically addressed the agrC gene of
agr type III present in the CC80 lineage (67). The nonsynonymous
replacement in AgrC (L184I) is located in the last transmembrane
helix (TM6) of the sensor domain, which has been shown to be of
critical importance in signaling the binding of the AIP agonist to
the histidine kinase domain (68). The nonsynonymous replace-
ment, resulting in a change from a leucine to an isoleucine, occurs
within the same class of amino acids (aliphatic) with the addition
of a CH3 side chain. The impact of this subtle change may play a
role in increasing the fitness of the derived CC80 isolates, but this
remains to be tested. No other resistance markers or virulence
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factors besides SCCmec IVc, fusB, and the variation of agrC were
associated with the derived clade. The genes encoding exfoliative
toxin D and epidermal cell differentiation inhibitor (etd and edin,
respectively) have previously been linked to the virulence of Eu-
ropean CA-MRSA clone; however, we found a pathogenicity is-
land containing these two genes conserved among all isolates in
the collection, including the basal isolates.

Our analyses strongly suggest that the SCCmec and the
p11819-97 plasmid were acquired only once as part of the geo-
graphic expansion of CC80 (see Fig. S5 in the supplemental ma-
terial). In contrast, the �Sa2 prophage carrying the PVL-encoding
genes was found to be an ancestral component of this lineage. All
but one of the CC80 isolates described here carried a �Sa2 pro-
phage, with 99% (95/96) of these encoding PVL (see Table S1 in
the supplemental material). When analyzed independently, the
�Sa2 phylogeny was consistent with that of the core genome of
CC80, indicating that this prophage was introduced to the lineage
before its transition out of sub-Saharan Africa (see Fig. S5C in the
supplemental material). This is corroborated by the high rate of
PVL-positive MSSA isolates in sub-Saharan Africa. Thus, Africa
may serve as a reservoir for PVL-positive lineages. Indeed, our
study reveals several unrelated imports of basal PVL-positive
MSSA CC80 isolates into France. Similarly, a sub-Saharan African
origin of the PVL-positive ST152 MRSA cluster in Central Europe
has been hypothesized (69, 70). The �Sa2 phylogeny also revealed
that CC80-associated �Sa2 represents a unique subgroup of this
important prophage.

Among the included CC80 isolates, the SCCmec type IVc ele-
ment is exclusively associated with the derived clade, with no
MRSA isolates related to sub-Saharan Africa. In-depth analysis of
the SCC element revealed seven SCCmec IVc subtypes and two
different SCC remnants, with the majority of these being single
insertion/deletion variants of the predominant SCCmec IVc1 sub-
type (see Fig. S4 in the supplemental material). In contrast to data
from other S. aureus clonal lineages, such as CC5, CC8, CC22, and
CC398 (46, 71–73), a single acquisition of the SCCmec element in
the CC80 lineage was observed (see Fig. S5A in the supplemental
material). An ~4-kb insertion into the att SCC integration site in
orfX was observed in the vast majority (95/97) of the CC80 iso-
lates. The type IV SCCmec elements associated with successful
CA-MRSA lineages have been described as relatively short
(�30 kb), with an almost absent J2 region (74). These shorter
SCCmec elements have been proposed to impose a lower fitness
disadvantage in community lineages than the larger elements as-
sociated with hospital lineages (75, 76). However, with a 37-kb
type IVc1 cassette being the most prevalent in this study, CC80
seems to carry an unusually large community-associated SCCmec
variant harboring a 17-kb J2 region. This region includes two re-
sistance genes, aadK and aphA, conferring resistance against kana-
mycin and amikacin (see Fig. S4 in the supplemental material).
Kanamycin and amikacin have primarily been used in hospitals,
which may coincide with the reported presence of CC80 in hospi-
tals in Africa, the Middle East, and Southern Europe (13, 14, 16,
77).

The fusidic acid resistance determinant fusB was the sole resis-
tance determinant on the 23-kb p11819-97 plasmid that has been
acquired once by the CC80 lineage prior to the expansion out of
sub-Saharan Africa (see Fig. 1). fusB-mediated resistance to fu-
sidic acid, a phenotypic characteristic of the European CA-MRSA
lineage (30), has previously been identified in S. aureus and is

encoded on two plasmids, pUB101 and pUB102 (GenBank acces-
sion numbers NC_005127 and DQ269019, respectively). Neither
of these was present in our collection. Fusidic acid has been a
widely used topical agent against S. aureus-related skin and soft
tissue infections in Europe, the Middle East, and North Africa
since the early 1980s (Jim Frater [LEO Pharma A/S], personal
communication). These three regions also define the geographical
dissemination of the fusidic acid-resistant European CA-MRSA
clone, and they coincide historically with our time estimate of the
clonal expansion of the fusidic acid-sensitive ancestral clone into
these areas around 1990.

The antimicrobial resistance profiles observed in the derived
clade of both MSSA and MRSA isolates exhibited striking differ-
ences compared to those in the basal MSSA clade (Table 1; also, see
Table S1 in the supplemental material). The predominant resis-
tance profile, beta-lactams, fusidic acid, kanamycin/amikacin,
and tetracycline, was present in 57% (48/84) of the isolates in the
derived clade, with sporadic additional resistances to mupirocin,
norfloxacin, and rifampin. The ancestral lineage was mostly sus-
ceptible to all antimicrobials tested, including beta-lactams and
fusidic acid, but carried the tetracycline resistance determinant
tet(K) on a small plasmid, pT181. In the derived clade, the tet(K)
gene was present on two small plasmids related to pT181 (Fig. 1)
but not present on the same plasmid as the compared fusidic acid
determinant, as previously reported (78). Thus, isolates in the
derived clade generally carry two resistance plasmids. Interest-
ingly, a recent study showed that positive epistasis between coex-
isting large and small plasmids (79) may be supportive for the
observed long-term plasmid persistence. Tetracycline is com-
monly used in Africa in both humans and animals (80, 81). In
North Africa and the Middle East, S. aureus strains are commonly
resistant to tetracycline (39, 77, 82). In Europe, tetracycline has
also been used in the treatment of various S. aureus indications
and long-term treatment of acne as well as in livestock. Contrary
to population studies on S. aureus CC8 and CC22 that showed a
time-dependent increase in resistance over time (72, 73), the pre-
dominant resistance profile of isolates in the derived clade of
CC80 has been highly stable over time (data not shown).

The phylogeny of the S. aureus CC80 lineage is in many ways
unique compared to other investigated S. aureus lineages. This
study presents evidence of a parallel spread of the European CA-
MRSA lineage to most areas of present-day distribution soon after
the successful dominant clone emerged. The lack of phylogeo-
graphic signal is likely the result of extensive human travel activi-
ties within Europe and through immigration from primarily
North Africa and the Middle East into Europe (24, 25, 83). Put
together, both phenomena shaped the dispersal pattern of the CA-
MRSA clone.

We found no evidence of specific virulence factors associated
with either of the two major clades of CC80 (see Fig. S6 in the
supplemental material) but did observe notable acquisitions of
genes responsible for resistance to methicillin, fusidic acid, and
aminoglycosides and a noteworthy change in the element carrying
the tetracycline resistance determinant tet(K). Combined, our re-
sults indicate that the European CA-MRSA clone developed
within a short time span and only spurred the dispersal of a single
successful multidrug-resistant descendant. This is in contrast to
the evolution of the ST22-A and USA300 clones (72, 73), where
the clonal expansions have been linked to an increase in antibiotic
resistance traits over time.
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An important limitation of this study and others of its kind is
the inevitable bias that comes with selecting isolates. In order to
minimize this inherent limitation, we established a large strain
collection covering 21 countries, spanning a period of almost
20 years, and enriching for the rare MSSA isolates. Proportionally,
a large number of Danish and French isolates were included in the
study; however, this would not inherently influence the results.
The other major limitation was our inability to determine the true
geographic origin of isolates, because in most cases we were unable
to inquire about the recent travel/immigration history of the hu-
man subjects from whom samples were collected. This is high-
lighted by the French isolates belonging to the ancestral clade for
which direct connections with West Africa (military activities, Af-
rican origin) have been determined.

In conclusion, the analyses that we conducted provide a pro-
posed depiction of the natural history of one of the most successful
CA-MRSA clones described to date, the so-called European CA-
MRSA lineage. Phylogeographic reconstruction and molecular
clock analyses presented here are supported by known human
migration and clinical antimicrobial use patterns that may have
driven the epidemic spread of this lineage. Finally, while this study
shows the importance of horizontal gene flow to the adaptation of
S. aureus to new host environments, it also underscores the im-
portance of clonal expansion in MRSA epidemiology when a ge-
netic combination of adapted and successful traits has been ob-
tained. Future studies may elucidate the functional impact of the
agrC codon change and its importance in making CC80 a highly
successful clone.

MATERIALS AND METHODS
Bacterial isolates. A total of 97 S. aureus CC80 isolates sampled in Europe
(Belgium, Denmark, Finland, France, Germany, Greece, Poland, Roma-
nia, Serbia, Slovenia, Spain, Sweden, and Switzerland), North Africa (Al-
geria and Tunisia), sub-Saharan Africa (Gabon, Nigeria, Togo, and
Uganda), the Middle East (Kuwait and Jordan), and Asia (Malaysia) be-
tween 1993 and 2010 were included in the study (Table 1; also, see Ta-
ble S1 and Fig. S1 in the supplemental material). In total, 23 MSSA isolates
and 74 MRSA isolates were included. All isolates were spa typed as previ-
ously described (84). Danish isolates constituted a large proportion of the
MRSA isolates, as the Danish MRSA collection contains a consecutive
complete national collection since 1988, including the oldest reported
CC80 isolates.

Antimicrobial susceptibility testing. Antimicrobial susceptibility was
determined using disc diffusion according to EUCAST methodology
(http://www.eucast.org) for 11 antimicrobials: clindamycin, cefoxitin,
erythromycin, fusidic acid, kanamycin, linezolid, mupirocin, norfloxacin,
rifampin, sulfamethoxazole-trimethoprim, and tetracycline.

Genome sequencing. DNA sequencing was performed as previously
described (46). Briefly, for each isolate, 1 to 5 �g DNA was sheared using
a SonicMAN (Matrical BioScience, WA) sonicator to a size range of 200 to
1,000 bp. After ligation of the adaptors, 500- to 600-bp fragments were
isolated and purified using gel electrophoresis. The pooled paired-end
libraries were sequenced on an Illumina IIx genome analyzer (Illumina,
Inc., CA) to a read length of 101 bp, except for isolate 93-2578-nig-2010,
for which read lengths of 251 bp were obtained using a MiSeq instrument
(Illumina Inc.).

DNA microarray. A single isolate, 88-HT20060002-fa-2005, was
characterized using the Alere S. aureus genotyping kit (Alere Technolo-
gies, Jena, Germany) according to the manufacturer’s instructions.

SNP calling. SNPs were detected by aligning Illumina reads from in-
dividual isolates against the chromosome of S. aureus 11819-97 (GenBank
accession number NC_017351) (52), a complete reference genome of a
Danish clinical MRSA isolate from the European CA-MRSA lineage, us-

ing SHRiMP 2.0 (85). SNPs in the conserved core genome of the strain
collection were identified using Nesoni v 0.52 (http://www.bioinformatics
.net.au). Custom Perl script was used to retain only those SNPs that were
supported by at least 90% of base calls in all the analyzed strains. Indica-
tions of horizontal gene transfer events were defined as calling of �3
unique SNPs in succession in a single isolate. For SNP identification in
specific elements (see “Genetic elements” below), Illumina WGS data sets
were aligned against the 11819-97 reference genome using the short-read
alignment component of the Burrows-Wheeler aligner (86), and external
genomes were aligned using MUMmer (87). Each alignment was analyzed
for SNPs using SolSNP (http://sourceforge.net/projects/solsnp/) and ex-
cluded all SNPs that did not meet a minimum coverage of 10 or if the
variant was present in �90% of the base calls for that position. SNPs
identified in duplicated regions on the reference genome were removed.

Recombination detection. Most of the analyses developed in our an-
alytical framework (phylogenetics and Bayesian inference) are based on
the assumption that S. aureus evolution is mostly clonal and that recom-
bination can be neglected. Therefore, in a preliminary step, we tested for
the presence of mosaic genomes with the algorithm SplitsTree v4.13.1
(88). Putative recombination signatures were inferred using Neighbor-
Net (89), and each data set was analyzed for the presence of recombinant
sequences using the PHI test in SplitsTree with an alpha value of 0.001.

Likelihood mapping. The phylogenetic signal of the data set was in-
vestigated with the likelihood mapping method implemented in TREE-
PUZZLE v 5.2 (90) by analyzing 10,000 random quartets. This method
proceeds by evaluating, using maximum likelihood, groups of four ran-
domly chosen sequences (quartets). The three possible unrooted tree to-
pologies for each quartet are weighted, and the posterior weights are then
plotted using triangular coordinates, such that each corner represents a
fully resolved tree topology. The resulting distribution of the points there-
fore shows whether the data are suitable for a phylogenetic reconstruc-
tion.

Phylogenetic inferences. Genome-wide phylogenetic relationships
were reconstructed using the maximum-likelihood approach imple-
mented in PhyML v 3.412 (91). The robustness of the maximum-
likelihood tree topology was assessed with bootstrapping analyses of 1,000
pseudoreplicated datasets. A generalized time-reversible (GTR) substitu-
tion model (92) with gamma-distributed rate heterogeneity was selected
based on Akaike’s information criterion using jModelTest2 (93). Phylo-
genetic analysis determined CC1 to be the outgroup most closely related
to CC80 when the CC80 sequence was compared to published genome
sequences representing CC1, CC5, CC8, CC30, CC45, CC59, CC93, and
CC398 (GenBank accession numbers BA000033, BA000018, CP000255,
BX571856, CP006044, NC_016928, NC_017338, and AM990992, respec-
tively) as previously described (46). Therefore, the phylogenies were
rooted with the community-associated strain MW2 (GenBank accession
number BA000033). Phylogenetic relationships for genetic elements were
reconstructed using the maximum-likelihood approach implemented in
CLCbio’s Genomics Workbench v 6.5 (CLCbio, Aarhus, Denmark) based
on Akaike’s information criterion.

Coalescence-based analyses. During analysis, evolutionary rates and
tree topologies were analyzed using the GTR and Hasegawa-Kishino-
Yano (HKY) (94) substitution models with gamma-distributed among-
site rate variation with four rate categories (	4). The molecular clock was
calibrated under either a strict molecular clock, which assumes the same
evolutionary rates for all branches in the tree, or a relaxed clock, which
allows different rates. Constant-sized, logistic, exponentially growing co-
alescent models were used. We also used the Bayesian skyline plot model
(95), based on a general, nonparametric prior that enforces no particular
demographic history. We used a piecewise linear skyline model with 10
groups and then compared the marginal likelihood for each model using
Bayes factors estimated in Tracer v 1.5 (http://tree.bio.ed.ac.uk/software/
tracer/). For each analysis, two independent runs of 100 million steps were
performed, and the chain was sampled every 10,000th generation. Exam-
ination of the Markov chain Monte Carlo (MCMC) samples with Tracer
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indicated convergence and adequate mixing of the Markov chains with
effective sample sizes (ESS) for each parameter in the hundreds or thou-
sands. The first 10% of each chain was discarded as burn-in. The MCMC
samples were summarized using the maximum clade credibility topology
found with TreeAnnotator v 1.7.5 (96), with branch lengths reported in
years (median number of of branches that were present in at least 50% of
the sampled trees). The Bayesian skyline plot was reconstructed using the
posterior tree sample and Tracer.

Evaluation of competing models. Models were compared by calculat-
ing the Bayes factor (BF), which is the ratio of the marginal likelihoods of
the two models being compared. Approximate marginal likelihoods for
each coalescent model were calculated via importance sampling (1,000
bootstraps) using the harmonic mean of the sampled likelihoods. The
ratio of the marginal likelihoods between any two models is the BF. Evi-
dence against the null model (i.e., the one with lower marginal likelihood)
is indicated by the formulas 2�ln(BF) � 3 (positive) and 2�ln(BF) � 10
(strong) (97). The calculations were performed with BEAST v 1.7.5 and
Tracer.

Genetic elements. Analyses of the genetic diversity of the SCCmec
cassette, the PVL-encoding prophage �Sa2, and the fusB plasmid were
investigated by SNP diversity in conserved regions among the 97 isolates
and selected references as described below. Closing of seven of the ten
distinct SCCmec elements inserted in the attB site, the plasmid p11819-97,
and two novel plasmids, pT45 and pT49 tet(K), was performed by de novo
assembly with subsequent gap closure in silico using Genomics Work-
bench (CLCbio).

For analysis of the SCCmec diversity, six SCCmec type IV variants were
initially compared for overall similarity of content using Mauve (98) prior
to SNP calling; type IVa, isolate JCSC1968; type IVb, isolate JCSC1978;
type IVc, isolate MR108; type IVc, isolate 2314, type IVe, isolate AR43/
3330.1; type IVg, isolate M03-68, with GenBank accession numbers
AB063172, AB063173, AB096217, AY271717, AJ810121, and DQ106887,
respectively.

Plasmid p11819-97 (GenBank accession number NC_017350) resem-
bled two other available S. aureus plasmids from Australia, the complete
plasmid pWBG753 (GenBank accession number GQ900395), from an
ST8 isolate, and the draft plasmid SAP103A (GenBank accession number
GQ900497) (99), based on BLASTN analysis against GenBank. Both were
included in the SNP analysis in order to determine the diversity of
p11819-97 within the CC80 collection.

�Sa2 diversity analysis within the CC80 strains was performed using
seven lukS/F-PV-containing �Sa2 prophages from five distinct
community-associated S. aureus genetic lineages as part of the analysis: a
CC1 isolate (MW2), two CC8 isolates (FPR3757 and TCH1516), two
CC30 isolates (55_2053 and TCH60), a CC59 isolate (M013), and a CC93
isolate (JKD6159), with GenBank accession numbers NC_003923,
CP000255, CP000730, CP002388, CP002110, NC_016928, and
CP002114, respectively.

The presence or absence of mecA, fusB, lukS/F-PV, tet(K), tet(L),
tet(M), and ileS2 was examined using local BLASTN against the generated
contigs from the genome data of the 97 CC80 isolates (Genomics Work-
bench; CLCbio). The query sequences used were mecA, fusB, lukS/F-PV
(GenBank accession number NC_017351), tet(K) (GenBank accession
number NC_017331), tet(L) (GenBank accession number FN390947),
tet(M) (GenBank accession number AM990992), and ileS2 (GenBank ac-
cession number EU366902).

Accessory genome. Protein sequences were extracted from the ge-
nome sequences using Prodigal (100). All protein sequences were
searched against the Pfam-A database (101, 102) using HMMER3 (103).
The protein sequences were binned by the absence or presence of Pfam
protein domains. Within each bin, all sequences were compared pairwise
using BLAST 2.2.26 (104) without low-complexity filtering and using an
E-value cutoff of 0.05. The sequences within each bin were subsequently
clustered based on the BLAST matches using the Markov cluster (MCL)
algorithm (105, 106) with a set I value of 5. Stable clusters were considered

gene families. Identified gene families were divided into three groups: core
genes (gene families present in all isolates), singleton genes (gene families
present in only one isolate), and accessory genes (all remaining gene fam-
ilies). Acquisition of genes related to the derived clade was examined by
identifying gene families present in �2 (15%) of the basal isolates and
absent in �13 (15%) of the derived isolates. Gene families absent in �2
basal isolates and present in �13 of the derived isolates were used to
identify gene loss associated with the derived clade.

Sequence data accession numbers. The accession numbers for the
Illumina sequences generated from the 97 S. aureus CC80 isolates de-
scribed in this study are available in the European Nucleotide Archive
(ENA; http://www.ebi.ac.uk/ena) under the primary identification num-
ber PRJEB6777. Sequences can also be located in the ENA using the fol-
lowing study title: “Origin and Evolution of the European Community-
Acquired Methicillin-Resistant Staphylococcus aureus.” The sequence of
the SCCmec type IVc1 element has been deposited in GenBank under
accession number KM281804; the sequences of plasmids pT45 and pT49
have been deposited in GenBank under accession numbers KM281802
and KM281803.
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