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METHODOLOGY ARTICLE Open Access

Knowledge-fused differential dependency
network models for detecting significant
rewiring in biological networks
Ye Tian1†, Bai Zhang2†, Eric P Hoffman3, Robert Clarke4, Zhen Zhang2, Ie-Ming Shih2, Jianhua Xuan1,
David M Herrington5 and Yue Wang1*

Abstract

Background: Modeling biological networks serves as both a major goal and an effective tool of systems biology in
studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific
and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms,
modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations.
While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior
knowledge into data-driven approaches can improve the robustness and biological relevance of network
inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly
complex networks; imperfect prior knowledge; missing significance assessment; and heuristic structural parameter
learning.

Results: To address these challenges, we formulated the inference of differential dependency networks that
incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an
efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across
different conditions. We used a novel sampling scheme to estimate the expected error rate due to “random”
knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge
integrated approach. We demonstrated and validated the principle and performance of our method using
synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained
biologically plausible results. The open-source R software package and the experimental data are freely available at
http://www.cbil.ece.vt.edu/software.htm.

Conclusions: Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused
differential dependency network in revealing the statistically significant rewiring in biological networks. The
method efficiently leverages data-driven evidence and existing biological knowledge while remaining robust to
the false positive edges in the prior knowledge. The identified network rewiring events are supported by previous
studies in the literature and also provide new mechanistic insight into the biological systems. We expect the
knowledge-fused differential dependency network analysis, together with the open-source R package, to be an
important and useful bioinformatics tool in biological network analyses.

Keywords: Biological networks, Probabilistic graphical models, Differential dependency network, Network rewiring,
Network analysis, Systems biology, Knowledge incorporation, Convex optimization
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Background
Biological networks are context‐specific and dynamic in
nature [1]. Under different conditions, different regulatory
components and mechanisms are selectively activated or
deactivated [2,3]. One example is the topology of under-
lying biological network changes in response to internal or
external stimuli, where cellular components exert their
functions through interactions with other molecular com-
ponents [4,5]. Thus, in addition to asking “which genes are
differentially expressed”, the new question is “which genes
are differentially connected” [6,7]. Studies on network-
altering events will shed new light on whether network re-
wiring is a general principle of biological systems regarding
disease progression or therapeutic responses [2,3]. More-
over, due to inevitable experimental noise, snapshots of
dynamic expression, and post-transcriptional or transla-
tional/post-translational modifications, systematic efforts
to characterize biological networks must effectively distin-
guish significant network rewiring from random back-
ground fluctuations [1].
Almost exclusively using high-throughput gene ex-

pression data and focusing on conserved biological net-
works, various network inference approaches have been
proposed and tested [1], including probabilistic Boolean
networks [8], state‐space models [9,10], and probabilis-
tic graphical models [11]. However, since these methods
often assume that there is a static network structure,
they overlook the inherently dynamic nature of molecu-
lar interactions, which can be extensively rewired across
different conditions. Hence, current network models
only present a conserved cellular network averaging
across all samples. To explicitly address differential net-
work analysis [3,5,12], some initial efforts have been re-
cently reported [1]. In our previous work, Zhang et al.
proposed to model differential dependency networks
between two conditions by detecting network rewiring
using significance tests on local dependencies across
conditions [13,14], which is a substantially different
method from the one proposed in this paper where ex-
perimental data and prior knowledge are jointly mod-
eled. The approach was successfully extended by Roy
et al. to learn dynamic networks across multiple condi-
tions [15], and by Gill et al. to assess the overall evi-
dence of network differences between two conditions
using the connectivity scores associated with a gene or
module [16]. Pioneered and reported in [17], correlation
and partial correlation are used to construct network
graphs, and differential pathway analysis is developed
based on graph edit distance. The temporal evolution of
network structures is examined with a fused penalty
term to encode relationship between adjacent time
points in [18]. Furthermore, recent efforts have also
been made to incorporate existing knowledge about net-
work biology into data-driven network inference [19].

Wang et al. proposed to incorporate prior knowledge
into the inference of conserved networks in a single
condition by adjusting the Lasso penalties [20]. Yet, the
inherently dynamic wiring of biological networks re-
mains under-explored at the systems level, as inter-
action data are typically reported under diverse and
isolated conditions [1].
There are at least five unresolved issues concerning

differential network inference using data-knowledge in-
tegrated approaches: (1) the solution (search) space is
usually large while sample sizes are small, resulting in
potential overfitting; (2) both conserved and differential
biological networks are complex and lack closed-form or
efficient numerical solutions; (3) “structural” model pa-
rameters are assigned heuristically, leading to potentially
suboptimal solutions; (4) prior knowledge is imperfect
for inferring biological networks under specific condi-
tions, e.g., false positive “connections”, biases, and non-
specificity; and (5) most current methods do not provide
significance assessment on the differential connections
and rigorous testing of the type I error rate.
To address these challenges, we formulated the infer-

ence of differential dependency networks that incorpor-
ate both conditional data and prior knowledge as a
convex optimization problem, and developed an effi-
cient learning algorithm to jointly infer the conserved
biological network and the significant rewiring across
different conditions. Extending and improving our work
on Gaussian graphical models [21,22], we designed
block-wise separable penalties in the Lasso-type models
that permit joint learning and knowledge incorporation
with an efficient closed-form solution. We estimated the
expected error rate due to “random” prior knowledge
via a novel sampling scheme. Based on that scheme, we
developed a strategy to fully exploit the benefit of this
data-knowledge integrated approach. We determined
the values of model parameters that quantitatively cor-
respond to the expected significance level, and evalu-
ated the statistical significance of each of the detected
differential connections. We validated our method using
synthetic datasets and comprehensive comparisons. We
then applied our method to yeast cell line and breast
cancer microarray data and obtained biologically plaus-
ible results.

Methods
Formulation of knowledge-fused differential dependency
network (kDDN)
We represent the condition‐specific biological networks
as graphs. Suppose there are p nodes (genes) in the net-
work of interest, and we denote the vertex set as V. Let
G(1) = (V, E(1)) and G(2) = (V, E(2)) be the two undirected
graphs under the two conditions. G(1) and G(2) have the
same vertex set V, and condition‐specific edge sets E(1)
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and E(2). The edge changes indicated by the differences
between E(1) and E(2) are of particular interest, since
such rewiring may reveal pivotal information on how
the organisms respond to different conditions. We label
the edges as common edges or specific to a particular
condition in graph G = (V, E) to represent the learned
networks under the two conditions.
Prior knowledge on biological networks is obtained

from well-established databases such as KEGG [19] and
is represented as a knowledge graph GW = (V, EW),
where the vertex set V is the same set of nodes (genes)
and the edge set EW over V is translated from prior
knowledge. There are many alternatives to extract exist-
ing domain knowledge, e.g., STRING, HPRD, or manual
construction. The adjacency matrix of GW, W ∈ℜp × p,
is used to encode the prior knowledge. The elements of
W are either 1 or 0, with Xji = 1 indicating the existence
of an edge from the jth gene to the ith gene (or their gene
products), where i, j = 1, 2,⋯, p, i ≠ j. W is symmetric if
the prior knowledge is not directed.
The main task in this paper is to infer from data

and prior knowledge GW the condition‐specific edge
sets E (both E(1) and E(2)). The method is illustrated
in Figure 1.
We consider the p nodes in V as p random variables,

and denote them as X1, X2,⋯, Xp. Suppose there are N1

samples under condition 1 and N2 samples under condi-
tion 2. Without loss of generality, we assume N1 =N2 =N.
Under the first condition, for variable Xi, we have observa-

tions x 1ð Þ
i ¼ x 1ð Þ

1i ; x
1ð Þ
2i ;⋯; x 1ð Þ

Ni

h iT
, while under the second

condition, we have x 2ð Þ
i ¼ x 2ð Þ

1i ; x
2ð Þ
2i ;⋯; x 2ð Þ

Ni

h iT
, i = 1,2,⋅⋅⋅,p.

Further, let X 1ð Þ ¼ x 1ð Þ
1 ; x 1ð Þ

2 ;⋯; x 1ð Þ
p

h i
be the data matrix

under condition 1 and X 2ð Þ ¼ x 2ð Þ
1 ; x 2ð Þ

2 ;⋯; x 2ð Þ
p

h i
be the

data matrix under condition 2.
Denote

yi ¼ x 1ð Þ
i

x 2ð Þ
i

" #
; X ¼ X 1ð Þ 0

0 X 2ð Þ

� �
; ð1Þ

and

βi ¼ β 1ð Þ
i

β 2ð Þ
i

" #
¼ β 1ð Þ

1i ; β
1ð Þ
2i ;⋯; β 1ð Þ

pi ; β
2ð Þ
1i ; β

2ð Þ
2i ;⋯; β 2ð Þ

pi

h iT
;

ð2Þ

with the non‐zero elements of β 1ð Þ
i indicating the neigh-

bours of the ith node under the first condition and the
non‐zero elements of β 2ð Þ

i indicating the neighbours of
the ith node under the second condition.
The problem of simultaneously learning network

structures and their changes under two conditions is for-
mulated as a regularized linear regression problem with
sparse constraints and solved by convex optimization.
For each node (variable) Xi, i = 1,2,⋅⋅⋅,p, we solve the
optimization with the objective function

f βið Þ ¼ 1
2

yi−Xβik k22þλ1
XP

j¼1
1−Wjiθ
� �

β 1ð Þ
ji

��� ���þ β 2ð Þ
ji

��� ���� �
þλ2 β 1ð Þ

i −β 2ð Þ
i

			 			
1

ð3Þ

The non‐zero elements in W introduce knowledge to
the objective function (3), and θ is a ℓ1 penalty relax-
ation parameter taking value in [0, 1].
The solution is obtained by minimizing (3),

Figure 1 Knowledge-fused differential dependency network learning. The algorithm takes condition-specific data and prior knowledge as
input and infers condition-specific networks. Black edges are common edges. Red and green edges are differential edges specific to conditions.

Tian et al. BMC Systems Biology 2014, 8:87 Page 3 of 12
http://www.biomedcentral.com/1752-0509/8/87



βi ¼ argminβi f βið Þ
¼ argmin

β 1ð Þ
i ;β 2ð Þ

i

1
2

yi−Xβik k22þλ1
Xp
j¼1

1−Wjiθ
� �

� β 1ð Þ
ji þj jβ 2ð Þ

ji

��� ���� �
þ λ2 β 1ð Þ

i −β 2ð Þ
i

			 			
1

s:t: β 1ð Þ
ii ¼ 0; β 2ð Þ

ii ¼ 0:

ð4Þ

Both the cost function 1
2 yi−Xβik k22 and two

regularization terms
Xp
j¼1

1−Wjiθ
� �

β 1ð Þ
ji þj jβ 2ð Þ

ji

��� ���� �
and

β 1ð Þ
i −β 2ð Þ

i

			 			 co-existed in the objective function are con-

vex, and this convex formulation leads to an efficient al-
gorithm. The structures of the graphical model under
two conditions are obtained jointly by solving (4) se-

quentially for all nodes. The inconsistency between β 1ð Þ
i

and β 2ð Þ
i highlights the structural changes between two

conditions, and the collection of differential edges form
the differential dependency network.
Given the vast search space and complexity in both con-

served and differential networks, it is crucial for kDDN to
identify statistically significant network changes and filter
the structural and parametric inconsistencies due to noise
in the data and limited samples. This objective is achieved
by selecting the proper model specified by λ1 and λ2 that
best fits the data and suffices the statistical significance. λ1
is determined by controlling the probability of falsely join-
ing two distinct connectivity components of the graph
[23] and λ2 is found by setting differential edges to a de-
fined significance level. We refer readers to Additional
file 1: S4.1 for a detailed discussion of model parameter-
setting approaches.
With parameters specified, problem (4) can be solved ef-

ficiently by the block coordinate descent algorithm pre-
sented in Additional file 1: S4.3, Algorithm S1.

Incorporation of prior knowledge
The prior knowledge is explicitly incorporated into the
formulation by Wji and θ in the block-wise weighted ℓ1
-regularization term. Wji = 1 indicates that the prior
knowledge supports an edge from the jth gene to the ith

gene and 0 otherwise. A proper θ will reduce the penalty

applied to β cð Þ
ji , c = 1, 2, corresponding to the connection

between Xj and Xi with Wji = 1. As a result, the connec-
tion between Xj and Xi will more likely be detected.
θ is a weighting parameter on the influence of prior

knowledge, determining the degree of the knowledge in-
corporation in the network inference. When θ = 0, the
algorithm ignores all knowledge information and gives
solely data-based results; conversely, when θ = 1, the

edge between Xj and Xi will always be included if such
an edge exists in the prior knowledge. Therefore, the prior
knowledge incorporation needs to find a proper balance
between the experimental data and prior knowledge to
achieve effective incorporation, as well as limit the adverse
effects caused by any spurious edges contained in imper-
fect prior knowledge.
Here we propose a strategy to control the adverse ef-

fects incurred in the worst‐case scenario under which
the given prior knowledge is totally random. In this case,
the entropy of the knowledge distribution over the edges
is maximized and the information introduced to the
inference is minimal. Incorporating such random know-
ledge, the inference results will deviate from the purely
data-driven result. We want to maximize the incorpor-
ation of relevant prior knowledge, while at the same
time making sure the potential negative influence of ir-
relevant prior knowledge is under control so that the ex-
pected deviation is confined within an acceptable range
in the worst‐case scenario. To properly set the value of
θ, we assess the actual influence of prior knowledge for
each value that θ may take, and developed Theorem 1 to
determine the best degree of prior knowledge incorpor-
ation. This approach guarantees robustness even when the
prior knowledge is highly inconsistent with the underlying
ground truth.
To quantify the effects of prior knowledge incorporation,

we use graph edit distance [24] between two adjacency
matrices as a measurement for the dissimilarity of two
graphs. Let GT = (V, ET) denote the ground‐truth graph
with edge set ET, GX = (V, EX) denote the graph learned
purely from data, i.e., W = 0, and GX;WR;θ ¼ V ;EX;WR;θ

� �
denote the graph learned with prior knowledge. WR indi-
cates that the prior knowledge is “random”. Let d(G1,G2)
denote the graph edit distance between two graphs. Fur-
ther, let |E| be the number of edges in the graph G.
Our objective is to bound the increase of inference

error rate associated with the purely data-driven result,
d GT;GX;WR;θ

� �
= ETj j−d GT;GXð Þ= ETj j , within an accept-

able range δ even if the prior knowledge is the worst
case by finding a proper θ.
Since GT is unknown, we instead control the increase in

the error rate indirectly by evaluating the effect of random
knowledge against GX, the purely data‐driven inference
result. Specifically, we use a sampling‐based algorithm to
find the empirical distribution of d GX;GX;WR;θ

� �
, and

choose the largest θ ∈ [0, 1] that satisfies:

θ̂ ¼ maxθ
s:t: E d GX;GX;WR;θ

� �
 �
= EXj j≤δ; ð5Þ

where E[d(G1,G2)] is the expectation of the graph edit
distance between graphs G1 and G2, with respect to its
empirical distribution.
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A natural question is whether using GX instead of GT

to control the increase in the error rate induced by ran-
dom knowledge is legitimate. To answer this question,
we show in Theorem 1 (proof included in Additional
file 1: S2) that the θ obtained in (5) in fact controls an
upper bound of E d GT;GX;WR;θ

� �
 �
= ETj j, i.e. the increase

in the network inference error rate induced by random
prior knowledge (the worst‐case scenario), under the as-
sumption that the number of false negatives (FN) in the
data-driven result GX is smaller than the number of
false positives (FP). As we adopt a strategy to control
the probability of falsely joining two distinct connectiv-
ity components [23], this assumption generally holds.
Theorem 1 establishes the relationship between prior

knowledge incorporation θ and the adverse effects of
prior knowledge on network inference, quantified by δ,
under the worst-case scenario (when the prior know-
ledge is completely irrelevant). For example, δ = 0.1 indi-
cates that the user can accept at most 10% performance
degradation if the prior knowledge is completely noise.
With the estimate of θ at δ = 0.1, even the prior know-
ledge is totally random, the performance will decrease
no more than 10%, while the relevant portion of the real
prior knowledge (better than random noise) can greatly
improve the overall network inference performance.

Theorem 1
For a given δ ∈ [0, 1), if the prior knowledge incorporation
parameter θ satisfies the inequality

E d GX;GX;WR;θ

� �
 �
EXj j ≤δ; ð6Þ

then the increase in the error rate induced by incorpora-
ting random prior knowledge is bounded by δ, more
specifically,

E d GT;GX;WR;θ

� �
 �
ETj j ≤

d GT;GXð Þ
ETj j þ δ ð7Þ

Given the number of edges specified in the prior
knowledge, procedures to compute θ are detailed in
Algorithm S2 in Additional file 1: S4.3.

Results and discussion
We demonstrated the utility of kDDN using both simu-
lation data and real biological data. In the simulation
study, we tested our method on networks with different
sizes and compared with peer methods the performance
of overall network structure recovery, differential net-
work identification and tolerance of false positives in the
prior knowledge.
In a real data application, we used kDDN to learn the

network rewiring of the cell cycle pathway of budding
yeast in response to oxidative stress. A second real data

application was the study of the differential apoptotic
signaling between recurring and non-recurring breast
cancer tumors. Applications to study muscular dystrophy
and transcription factor binding schemes are included in
Additional file 1: S6.

Simulation study
We constructed a Gaussian Markov random field with
p = 100 nodes and 150 samples following the approach
used in [23], and then randomly modified 10% of the edges
to create two condition‐specific networks with sparse
changes. The details of simulation data generation proced-
ure are provided in Additional file 1: S5.1. The number of
edges in prior knowledge M was set to be the number of
common edges in the two condition‐specific networks, and
δ was set to 0.1.
To assess the effectiveness of prior knowledge incorp-

oration and robustness of kDDN when false positive
edges were present in prior knowledge, we examined the
network inference precision and recall of the overall net-
work and the differential network at different levels of
false positive rate in the prior knowledge.
Both false positives and false negatives in the prior

knowledge here are with respect to the condition-specific
ground truth from which the data are generated. Thus, al-
though false positives in prior knowledge may contribute
more learning errors, false negatives will not worsen net-
work learning performance (results shown in Additional
file 1: S5.5).
Starting from prior knowledge without any false posi-

tive edges, we gradually increased the false positive rate
in prior knowledge until all prior knowledge was false.
At each given false positive rate in the prior knowledge,
we randomly created 1,000 sets of prior knowledge, and
compared the performance of kDDN in terms of precision
and recall with two baselines: (1) a purely data-driven re-
sult, corresponding to kDDN with θ=0, i.e., without using
any prior knowledge in the network inference (using only
data for network inference); and (2) a naïve baseline of
knowledge incorporation by superimposing (union) the
prior knowledge network and the network inferred purely
from the data.
The results of the overall network (both common and

differential edges) learning are shown in Figure 2(a) and
(b). The dot-connected lines are averaged precision or
recall of the network learned with 1,000 sets of prior
knowledge. The box plot shows the first, second and
third quartiles of precision or recall at each false positive
rate in prior knowledge (with the ends of the whiskers
extending to the lowest datum within a 1.5 interquartile
range of the lower quartile, and the highest datum within
a 1.5 interquartile range of the upper quartile). The blue
squared lines, brown circle lines, and red diamond lines
indicate the mean performance of kDDN, purely data-
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driven baseline, and naïve baseline, respectively. Narrower
lines with the same colors and line styles mark the one
standard deviation of the performance of the correspond-
ing approach.
Precision reflects the robustness to the false positive

edges and efficiency of utilizing the information in prior
knowledge. Figure 2(a) shows that, as expected, the false
positive rate in prior knowledge has a limited effect on
the precision of kDDN (blue squared lines). With more
false positives in the prior knowledge, the precision de-
creases but is still around the purely data-driven baseline
(brown circle lines) and much better than the naïve
baseline (red diamond lines). The naïve baseline suffers
significantly from the false positives in prior knowledge,
because it indiscriminately accepts all edges in prior
knowledge without considering evidence in the data.
This observation corroborates the design of our method:
to control the false detection incurred by the false posi-
tives in the prior knowledge. At the point where the false
positive rate in the prior knowledge is 100%, the de-
crease of precision compared with the purely data-based
result is bounded within δ.
Recall reflects the ability of prior knowledge in helping

recover missing edges. Figure 2(b) shows that when the
prior knowledge is 100% false, the recall is the same as
that of the purely data-driven result, because in this case
the prior knowledge brings in no useful information for
correct edge detection. When the true positive edges are
included in the prior knowledge, the recall becomes higher
than that of the purely data-based result, because more
edges are correctly detected by harnessing the correct in-
formation in the prior knowledge. The naïve baseline is
slightly higher in recall, since it calls an edge as long as
knowledge contains it, while kDDN calls an edge only
when both knowledge and data evidence are present. The
closeness between kDDN and naïve baseline demonstrates

the high efficiency of our method in utilizing the true infor-
mation in prior knowledge.
We then evaluated the effect of knowledge incorpor-

ation solely on the identification of differential networks
following the same protocol. The results are shown in
Figure 3 with the same color and line annotations.
For differential network recovery, the naïve baseline is

almost identical to purely data-driven results because
the prior knowledge seldom includes a differential edge
in a large network with sparse changes. While similar
advantages of kDDN apply, our method has better
precision and recall, and bounds the performance deg-
radation when knowledge is totally wrong. Unlike the
naïve baseline where knowledge and data are not linked,
we model the inference with knowledge and data together,
so knowledge is also able to help identify differential
edges. Performance evaluation results in Additional file 1:
S5.3 studied networks with varying sizes, reaching consist-
ent conclusions.
Depending on specific conditions, false positives in

prior knowledge may not distribute uniformly, but tend
to aggregate more towards certain nodes. Experiments
with biased knowledge distribution shown in Additional
file 1: S5.4, Figures S10-S13 indicate no difference or lit-
tle improvement compared to random knowledge, con-
firming that random knowledge represents the worst-
case scenario and the bound according to random know-
ledge is sufficient.

Performance comparisons with peer methods
We compared our joint learning method kDDN with four
peer methods: 1) DDN (independent learning) [13], 2)
csLearner (joint learning) [15], 3) Meinshausen’s method
(independent learning) [23], and 4) Tesla (joint learning)
[18]. csLearner can learn more than two networks but we
restricted the condition to two. Meinshausen’s method

Figure 2 Effects of false positive rates in prior knowledge on inference of the overall network. (a) Precision of overall network inference.
(b) Recall of overall network inference. The experiments show that true knowledge improves both precision and recall of overall network
inference, and the maximum degradation of inference results is bounded when the prior knowledge is imperfect.
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learns the network under a single condition, and we com-
bined the results learned under each condition to get con-
served network and differential network. Tesla learns a
time-evolving network, but can be adapted to two-
condition learning as well. Only kDDN can assign edge-
specific p-values to differential edges.
Parameters in kDDN are automatically inferred from

data as described in Additional file 1: S4.1. For the com-
peting methods in the comparison, we manually tested
and tuned their parameters to obtain their best perform-
ance. We set DDN to detect pair-wise dependencies.
The number of neighbors in csLearner is set to “4” (the
ground truth value). Meinshausen’s method uses the same
λ1 as inferred by kDDN, as it is a special case of kDDN
under one condition without prior knowledge. Tesla uses
the empirically-determined optimal parameter values,
since the parameter selection was not automatic but relies
on user input.
To assess the impact of prior knowledge, we ran kDDN

under three scenarios: data-only (kDDN.dt), data plus true
prior knowledge (kDDN.tk), and data plus “random” prior
knowledge (kDDN.fk). Only kDDN is able to utilize prior
knowledge.
The ground truth networks consisted of 80, 100, 120,

140 and 160 nodes, respectively, and correspondingly 120,
150, 200, 200 and 240 samples. For each network size, 100
replicate simulation networks were generated. We evalu-
ated the performance of inferring both overall and differ-
ential edges of the underlying networks using the F-score

(harmonic mean of precision and recall, 2 precision�recall
precisionþrecall )

and precision-recall averaged over all datasets under each

network size.
The results are presented in Figure 4 using bar plots.

The color annotations are: orange-csLearner, golden-
DDN, olive green-kDDN.dt, aquamarine-kDDN.fk, blue-
kDDN.tk, purple-Meinshausen, magenta-Tesla. We used

one-sided t-tests to assess whether kDDN performs bet-
ter than the peer methods across all network sizes. The
null hypothesis is that there is no difference between
the mean of F-score of kDDN and the peer methods.
The alternative hypothesis is that kDDN has the greater
mean of F-score. The detailed results are included in
Tables S1 and S2 in Additional file 1: S5.7, which shows
that kDDN.tk performs significantly better than peers in
all cases, and kDDN.dt and kDDN.fk performs better
than peers in 118 of 120 cases.
Figure 4(a) compares the ability of recovering overall

networks. We see kDDN.tk consistently outperforms all
peer methods, and kDDN.dt and kDDN.fk performs
comparably to Tesla (best-performing peer method). The
independent learning methods, DDN and Meinshausen’s
method, place third due to their inability to jointly
use data.
Figure 4(b) shows the comparison of performance on

recovering differential edges. kDDN consistently outper-
forms all peer methods under all scenarios. While kDDN
and Tesla share some commonalities, they use different
formulations. Where Tesla uses logistic regression,
kDDN adopted linear regression to model the depend-
ency. Such a difference also has implications for the sub-
sequent solutions and outcomes. The fact that kDDN
determines λ2 according to the statistical significance
of differential edges helps kDDN outperform Tesla in
differential edge detection. It is also clear that a single-
condition method cannot find the differential edges cor-
rectly and has the worst performance.
In Figures S17 and S18 in Additional file 1: S5.7, the

performance of these methods is compared in terms of
precision and recall; we reached the same conclusions.
Through these comparisons, we show that kDDN

performs better than peer methods in both overall and
differential network learning. High-quality knowledge
further improves kDDN performance, while kDDN is

Figure 3 Effects of false positive rates in prior knowledge on inference of the differential network. (a) Precision of differential network
inference. (b) Recall of differential network inference. The experiments show that true knowledge improves both precision and recall of
differential network inference. The maximum degradation of inference results is bounded when the prior knowledge is imperfect.
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robust enough even to totally random prior knowledge.
Joint learning, utilization of prior knowledge, and atten-
tion to statistical significance all helped kDDN outper-
form the other methods.

Pathway rewiring in yeast uncovers cell cycle response to
oxidative stress
To test the utility of kDDN using real biological data, we
applied the kDDN to the public data set GSE7645. This
data set used budding yeast Saccharomyces cerevisiae to
study the genome-wide response to oxidative stress im-
posed by cumene hydroperoxide (CHP). Yeast cultures
were grown in controlled batch conditions, in 1L fer-
mentors. Three replicate cultures in mid-exponential
phase were exposed to 0.19mM CHP, while three non-
treated cultures were used as controls. Samples were
collected at t = 0 (immediately before adding CHP) and
at 3,6,12,20,40,70 and 120 min after adding the oxidant.
Samples were processed for RNA extraction and pro-
filed using Affymetrix Yeast Genome S98 arrays. There
were 48 samples in total, evenly divided between the
treated and the non-treated groups.

We analyzed the network changes of cell cycle-related
genes with structural information from the KEGG yeast
pathway as prior knowledge. We added the well-studied
yeast oxidative stress response gene Yap1 [25-28] to the
knowledge network and related connections gathered
from the Saccharomyces Genome Database [29]. The
learned differential network result is shown in Figure 5,
in which nodes represent genes involved in the pathway
rewiring, and edges show the condition-specific connec-
tions. Red edges are connections in control and green
edges are connections under stress.
Oxidative stress is a harmful condition in cells, due to

the failure of the antioxidant defense system to effect-
ively remove reactive oxygen molecules and other oxi-
dants. The result shows that Yap1, Rho1 and Msn4 are
at the center of the network response to oxidative stress;
they are activated under oxidative stress and many con-
nections surrounding them are created (green edges).
Yap1 is a major transcription factor that responds to oxi-
dative stress [25-28]. Msn4 is considered as a general re-
sponder to environmental stresses including heat shock,
hydrogen peroxide, hyper-osmotic shock, and amino

Figure 4 Performance comparison in F score. (a) Inference of overall network. (b) Inference of differential network. Legend (from left to right):
orange-csLearner, golden-DDN, olive green-kDDN.dt, aquamarine-kDDN.fk, blue-kDDN.tk, purple-Meinshausen, magenta-Tesla. The experimental
results show that kDDN outperforms the peer methods in both overall network learning and differential network inference.
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acid starvation [30,31]. Rho1 is known to resist oxidative
damage and facilitate cell survival [32-34]. The involve-
ment of these central genes captured the dynamic re-
sponse of how yeast cells sense and react to oxidative
stress. The edge between Yap1 and Ctt1 under stress
grants more confidence to the result. Ctt1 acts as an
antioxidant in response to oxidative stress [35], and the
coordination between Yap1 and Ctt1 in protecting cells
from oxidative stress is well established [36]. This result
depicted the dynamic response of yeast when exposed to
oxidative stress and many predictions are supported by
previous studies. This real data study validated the effect-
iveness of the methods in revealing underlying mecha-
nisms and providing potentially novel insights. These
insights would be largely missed by conventional differen-
tial expression analysis as the important genes Rho1,
Msn4, Yap1 and Ctt1 ranks 13, 20, 64 and 84 among all 86
involved genes based on t-test p-values. In a comparison
with data-only results in Additional file 1: S6.1, 14 differ-
ent differential edges are found. We also applied a boot-
strap method in [37] to assess the robustness of the
findings as detailed in Additional file 1: S6.2.

Apoptosis pathway in patients with early recurrent and
non-recurrent breast cancer
Network rewiring analysis is also applicable to mechan-
istic studies and helps identify underlying key players
that cause phenotypic differences. For example, 50% of

estrogen receptor-positive breast cancers recur following
treatment, but the mechanisms involved in cancer recur-
rence remain unknown. Understanding of the mecha-
nisms of breast cancer recurrence can provide critical
information for early detection and prevention. We used
gene expression data from a clinical study [38] to learn
differences in the apoptosis pathway in primary tumors
between patients with recurrent and non-recurrent dis-
ease. We compared the pathway changes in tumors ob-
tained from patients whose breast cancer recurred within
5 years after treatment and from patients who remained
recurrence-free for at least 8 years after treatment. There
were 47 and 48 tumor samples in the recurring and non-
recurring groups, respectively. Gene expression data were
generated using Affymetrix U133A arrays. We used the
apoptosis pathway from KEGG as prior knowledge.
Following the same presentation as in the yeast study,

red edges are connections established in patients with re-
current disease, and green edges are connections unique
to patients without recurrent disease. Differences in the
signaling among genes in the apoptosis pathway between
patients whose cancer recurred or who remained cancer-
free are shown in Figure 6.
Three inflammatory/immune response genes (IL1B,

NFκB and TNFα) that are all linked to increased resist-
ance to breast cancer treatment were identified in the
recurrent tumors. These genes formed a path to inhibit
proapoptotic CASP3 and PPP3R1 [39], and to activate

Figure 5 Differential dependency network in budding yeast reflects the cell cycle response to oxidative stress. Red edges are
connections in control and green edges are connections under stress, mutually and exclusively. Yap1, Rho1 and Msn4, the three known
responders to stress response, are at the center of the inferred networks in response to oxidative stress. They are activated under oxidative stress
and many connections surrounding them are activated (green edges). Acting as an antioxidant in response to oxidative stress, Ctt1 coordinate
with Yap1 to protect cells from oxidative stress.
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Figure 7 Differential dependency network presented over the KEGG [19] apoptosis pathway. Recurrent breast cancers (featured by red
edges) showed the imbalance between apoptosis and survival with only one route into the cell through IL1B-induced inhibition of proapoptotic
CASP3. Non-recurrent breast cancer had a cascade of signaling pathways inside the cell that provides the balance between apoptosis
and survival.

Figure 6 Rewiring of apoptosis pathway in breast cancer patients with and without recurrence. Red edges are unique connections in
patients with recurrent breast cancer, where inflammatory/immune response genes IL1B, NFκB and TNFα that are all linked to increased resistance
to breast cancer treatment were found. Green edges are unique connections in patients with breast cancer that did not recur, where paths to
both anti-apoptotic XIAP/AKT2 and proapoptotic BAX and BAD were formed.
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the pro-survival genes PIK3R5 or CSF2RB that maintain
cell survival. In contrast, green edges that were present
in non-recurrent tumors form paths to both anti-
apoptotic XIAP/AKT2 and proapoptotic BAX and BAD
gene functions.
When we overlaid the differential network over the

KEGG [19] apoptosis pathway we noticed additional
differences in the signaling patterns. Using the same
color-coded presentation, we show the learned differen-
tial network in Figure 7. In the recurrent breast cancers
(red edges), the molecular activities mainly affect the ini-
tial apoptotic signals outside the cell and within the cell
membrane (ligands and their receptors), while inside the
cell there is no clear signaling cascade affected to deter-
mine cell fate. The only route affected within the cell is
IL1B-induced inhibition of proapoptotic CASP3. In non-
recurrent breast cancer, the affected network involves
both signals received from activation of the membrane
receptors and a cascade of signaling pathways inside the
cell to promote both apoptosis and survival. Since a bal-
ance between apoptosis and survival is necessary for dam-
aged cells to be eliminated and repaired cells to survive
[40], it is logical that both pathways would be activated
concurrently. Interestingly, the imbalance of apoptotic
and survival signals and the inhibition of CASP3 in recur-
rent cancer both lead to the resistance of cell death, re-
ported as a major hallmark of cancer [41].
In conclusion, the apoptosis pathway rewiring analysis

identified key mechanistic signaling differences in tu-
mors from patients whose breast cancer did or did not
recur. These differences provide a promising ground for
novel hypotheses to determine factors affecting breast
cancer recurrence.

Conclusions
To address the challenges concerning differential network
inference using data-knowledge integrated approaches, we
formulated the problem of learning the condition‐specific
network structure and topological changes as a convex
optimization problem. Model regularization and prior
knowledge were utilized to navigate through the vast solu-
tion space. An efficient algorithm was developed to make
the solution scalable by exploring the special structure of
the problem. Prior knowledge was carefully and efficiently
incorporated in seeking the balance between the prior
knowledge support and data-derived evidence. The pro-
posed method can efficiently utilize prior knowledge in the
network inference while remaining robust to false positive
edges in the knowledge. The statistical significance of re-
wiring and desired type I error rate were assessed and vali-
dated. We evaluated the proposed method using synthetic
data sets in various cases to demonstrate the effectiveness
of this method in learning both common and differential
networks, and the simulation results further corroborated

our theoretical analysis. We then applied this approach to
yeast oxidative stress data to study the cellular dynamic re-
sponse to this environmental stress by rewiring network
structures. Results were highly consistent with previous
findings, providing meaningful biological insights into the
problem. Finally, we applied the methods to breast can-
cer recurrence data and obtained biologically plausible
results. In the future, we plan to incorporate more types
of biological prior information, e.g., protein‐DNA bind-
ing information in ChIP‐chip data and protein‐protein
interaction data, to improve the use of condition-specific
prior knowledge.

Additional file

Additional file 1: Supplementary methods and experimental
results. Details of theoretical proofs and algorithms, more synthetic and
real data comparisons, and validations are included in this file.
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