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The purpose of the Functional Single Nucleotide Polymorphisms Associated with HumanMuscle Size and Strength study or FAMuSS
was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT).
The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS
participants were 1300 young (24 years), healthy men (42%) and women (58%) that were primarily of European-American descent.
They were genotyped for ∼500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy
expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed
a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before
and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI
measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of
the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body
composition, cardiometabolic biomarkers, and physical activity.

1. Introduction

We are part of a multidisciplinary research team, the Exercise
and Genetics Collaborative Research Group, that completed
a large exercise genomics study entitled Functional Single
Nucleotide Polymorphisms (SNPs) Associated with Human
Muscle Size and Strength (FAMuSS NIH R01 NS40606-
02) [1]. The primary aim of FAMuSS was to identify non-
synonymous SNPs (i.e., SNPs leading to amino acid changes)
that dictated baseline muscle size and strength, and the
extent of the muscle size and strength response to resistance
exercise training (RT). Other phenotypes examined were
baseline fat and bone volume and the response of these
phenotypes to RT, and baseline cardiometabolic biomarkers.

We envisioned that FAMuSS findings would lead to a better
understanding of physical health and well being as well as
disease processes such as sarcopenia during aging, atrophy
during weightlessness of space flight, sports performance,
and the progression of neuromuscular disease.

To achieve our aims about 1300 young, healthy men
(42%) and women (58%) (24 years, body mass index [BMI]
25 kg⋅m−2) primarily of European-American descent were
recruited and genotyped for ∼500 polymorphisms. Volun-
teers provided blood samples for determination of fasting
baseline cardiometabolic biomarkers and genotyping. They
completed the Paffenbarger Physical Activity Questionnaire
[2] to assess energy expenditure and time spent in light,
moderate, and vigorous intensity physical activity and sitting.
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Subjects then performed a progressive, unilateral RTprogram
of the nondominant arm with the dominant arm used as
a comparison. Before and after RT, muscle strength was
measured with the maximum voluntary contraction (MVC)
and one repetition maximum (1RM), while magnetic res-
onance imagining (MRI) measured muscle, fat, and bone
volume. To date there are over 30 FAMuSS publications. The
purpose of this review is to highlight the FAMuSS findings by
discussing the history of how FAMuSS originated, providing
a brief overview of the FAMuSS methods, and summarizing
our major findings regarding genotype associations with
baseline muscle strength and size and body composition
and the response of these phenotypes to RT, baseline fasting
cardiometabolic biomarkers, and habitual physical activity
levels.

2. The History of How FAMuSS Originated

Thomas A. Edison said, “Great Ideas Originate in the Mus-
cles”. The study of skeletal muscle is not a new idea but
one that has often intrigued human curiosity. If we begin
to understand the complexities behind basic skeletal muscle
function (i.e., strength) then this knowledge would provide
insight into understanding normal human body movement
and the ability to stress that system via an intervention. The
FAMuSS study was an attempt to understand the genetic
causes behind the response of muscle to an external stimulus.
The aims of the FAMuSS project were to utilize molecular
biology to answer two simple questions: (1) can genetic
variation explain differences in skeletal muscle size and
strength; and (2) can genetic variation explain how skeletal
muscle responds to RT? The purpose of FAMuSS was not
an attempt to understand the mechanical reasons for skeletal
muscle size or strength but to comprehend the biology that
controls the muscular apparatus.

Skeletal muscle makes up 30% of the human body so that
the genetics behind the strength/size of this organ deserves
attention. The maximum strength capacity of skeletal muscle
is manipulated by a multitude of factors including genetics
that can act synergistically. However, the most influential
stimulus in the response of muscle is RT, which effectively
increases maximal isometric and dynamic muscle contrac-
tion strength. Additionally, muscle strength is a key deter-
minant of an individual’s functional capacity. Even with the
critical importance of skeletal muscle in human health, little
was known regarding the genetic factors influencing skeletal
muscle size and strength and the response of this organ to
environmental factors such as RT. Thus, a comprehensive
study was needed to discover how genetics influence skeletal
muscle size and strength among healthy individuals as the
paradigm at that time was studying genetic variation and its
effect on dysfunction and disease. Our approach was not to
lessen the need for the study of SNPs and disease—but to add
new information to this important body of knowledge.

The FAMuSS study was built on the early work ofThomis
et al. [3] that showed the inheritance of arm strength and
size before and after RT in 25 monozygotic and 16 dizygotic
male twins. Muscle strength measured as 1RM showed a high

degree of heritability (77% pre- and 81% post-RT). Similarly,
handgrip strength among 257 male and 353 female twins
between 59–70 years suggested that strength had a heritability
of 65% and 30%, respectively [4]. Pérusse et al. [5] used a sta-
tistical procedure, path analysis, which allows the partition of
transmissible variance into genetic and cultural components
among 1630 nontwin, French-Canadians from 375 families
and attributed 30% of the phenotypic variance in muscular
strength in these families to genetic factors. These findings
made the rationale for the FAMuSS study even stronger. The
identification of genetic variants that play a role in the normal
response of muscle to external stimuli such as RT would have
impact on the sports world, butmore importantly, would also
provide insight into health and disease processes permitting
the possibility of new therapeutics to treat neuromuscular
disorders.

3. The FAMuSS Methods

3.1. Overview. FAMuSS methods have been described in
detail [1] and will be briefly overviewed here. FAMuSS
was conducted by the Exercise and Genetics Collaborative
Research Group consisting of researchers and site coordina-
tors from the University of Central Florida (TJ Angelopou-
los), University of Massachusetts (PM Clarkson), West Vir-
ginia University (PM Gordon), Dublin City University (NM
Moyna), University of Connecticut (LS Pescatello), Central
Michigan University (P Visich), Florida Atlantic University
(RF Zoeller), Yale University (TB Price), Hartford Hospital
(PD Thompson and RL Seip), and the Children’s National
Medical Center (EP Hoffman, PI, and JM Devaney). The
institutional review boards from the 10 institutions involved
in FAMuSS approved the study protocol. Study volunteers
were recruited to complete a 12-week progressive, unilateral
RT program to improve the strength and size of elbow flexor
and extensor muscles in the nondominant arm with the
dominant arm used as a comparison. Muscle strength was
measured as biceps MVC and 1RM and muscle size by MRI
of the biceps cross-sectional area. We used MRI to also
measured fat and bone volume. Prior to RT, investigators
obtained a blood sample for determination of a fasting
cardiometabolic profile and DNA extraction, and subjects
completed the Paffenbarger Physical Activity Questionnaire
to assess habitual physical activity [2].

3.2. Subjects. Subjects were excluded if they took corticos-
teroids, anabolic steroids, antihypertensive or antilipidemic
medications, diuretics, Depo-Provera contraceptive injec-
tion, Clenbuterol, Rhinocort nasal inhaler, lithium, or non-
steroidal anti-inflammatory medications. They were also
excluded if they took dietary supplements to enhance muscle
strength and size or weight; had chronic medical conditions;
had metal implants in the arms, eyes, head, brain, neck, or
heart; consumed >2 alcoholic drinks per day; performed RT
or other physical activity involving repetitive arm use within
the past year; and/or were seeking to gain or lose weight or
had a weight change >5 lb in the past 3 months. Furthermore,
subjects were instructed not to alter their habitual physical
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activity, lifestyle, or dietary habits, or otherwise gain or lose
weight during the study. Upon enrollment we measured
body weight and height to calculate BMI. To ensure weight
maintenance, body weight was measured throughout the
study.

3.3. Physical Activity Assessment. Habitual physical activity
phenotypes were obtained from the Paffenbarger Physical
Activity Questionnaire [2]. The derived phenotypes were
energy expended (kcal⋅wk−1) and time spent (hr⋅wk−1) in
light, moderate, and vigorous intensity physical activity as
well as walking, stair climbing, participation in sports and
recreational activities, and sitting. A total physical activity
index (kcal⋅wk−1) was also calculated.

3.4. Muscle Strength Testing. We assessed muscle strength
with the MVC and 1 RM in the trained (nondominant) and
untrained (dominant) elbow flexor muscles before and after
RT.

3.5. MRI Assessment of Muscle, Fat, and Bone Volume. MRI
assessment of both upper arms (trained and untrained) was
performed before and after RT. Fifteen 16mm contiguous
axial slices from each arm were taken from each arm
independently. Scans for both arms were taken by Fast
Spoiled Gradient Recalled and Fast Spin Echo with TE 1.8/TR
200msec.We used Rapidia (INFINITT Inc, Seoul, Korea) for
the volumetric analysis of the MRI images. Volumemeasures
were taken using an anatomical landmark (metaphyseal-
diaphyseal junction of the humerus) as our starting point and
assayed the six 1 cm slices proximal to it.

3.6. Resistance Exercise Training Program. RTwas performed
unilaterally in the nondominant arm. Subjects attended
supervised RT sessions twice weekly at least 48 hours apart
for 12 weeks.The program consisted of five exercises designed
primarily to train the elbow flexors and secondarily to train
the elbow extensors for balance. At the start of RT, subjects
performed three sets of 12 repetitions at 65–75% of 1RM. At
week five sets were reduced to eight repetitions at 75–82%
1RMand atweek 10 to six repetitions at 83–90% 1RM. Subjects
took 2 seconds each for the concentric and eccentric phase of
each repetition with a recovery between sets of 2 minutes.

3.7. Fasting Blood Sampling and Analyses
Cardiometabolic Biomarkers. Prior to RT, fasting blood sam-
ples were drawn and serum was separated by centrifuga-
tion at 1110 g for 10min and frozen for further analysis
of the cardiometabolic biomarkers by Quest Diagnostics.
Cardiometabolic biomarkers included glucose, insulin, total
cholesterol, low-density lipoprotein cholesterol [LDL], high-
density lipoprotein cholesterol [HDL], and triglyceride levels.
The homoeostasis model assessment (HOMA) was then
calculated [6]. DNA. In addition, blood was drawn into
vacutainer tubes containing ethylenediamine tetraacetic acid.
These tubes were sent to Children’s National Medical Center
where DNA was extracted using Puregene kits (Gentra
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Figure 1: Biceps cross-sectional area. Histogram of biceps cross-
sectional area changes (relative to baseline) within each gender for
the trained arm. Black bars denote responses of men, while white
bars denote responses of women. Reprinted with permission [7].

Systems, Inc.,Minneapolis,MN). Genotyping in the FAMuSS
study was completed using TaqMan allele discrimination
assays that employed the 5󸀠 nuclease activity of Taq poly-
merase. Both alleles were detected simultaneously using
allele-specific oligonucleotides labeled with different fluo-
rophores (VIC and FAM) and genotypes were determined
automatically by the ratio of the two fluorophores used. For
each SNP examined, a Taqman assay was used to genotype
the 1300 samples.Therefore, we generated 650,000 genotypes
for the 500 SNPs that were part of the FAMuSS study. Data
were processed using SDS v2.3 software. All gels were called
by two investigators, and if any disagreement in genotyping
was found, the genotyping was repeated.

4. FAMuSS Findings: Muscle Strength and Size

In 2005, Hubal et al. [7] published the results of the unilateral
RT program on muscle size and strength in the FAMuSS
cohort, highlighting the high degree of variability across all
subjects given a standardized RT program. Across 485 sub-
jects (342 women and 243 men), RT resulted in modest size
gains and moderate (isometric) to high (dynamic) strength
gains.Men averaged significantly higher absolute and relative
size gains than women in the trained arm (Figure 1), while
no significant changes were seen in the untrained arm. Size
gains ranged from −2 to +59% of baseline muscle volume
with similar distribution of responses in relative size gains
between men and women. While absolute gains in strength
(both dynamic and isometric strength) were greater in men,
women greatly outpacedmen for relative strength gains (64%
to 40% for dynamic strength by 1 RM; 22% to 16% for MVC;
𝑃 < 0.001) (Figure 2). Distribution parameters for strength
gains indicated a strong clustering of men around the mean,
while women ranged in a more normal distribution pattern,
indicating that more womenwere higher or lower responders
than men.

The high degree of variation that we observed in muscle
size and strength responses to RT that were sex specific
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Figure 2: Isometric strength test. Histogram of isometric strength
changes (relative to baseline) within each gender for the trained
arm. Black bars denote responses of men, while white bars denote
responses of women. Reprinted with permission [7].

allowed us to test for various factors that influenced these
phenotypes at baseline and in response to RT. While genetic
modifiers of muscle strength and size were a priority for
FAMuSS, other factors were also explored, such as sex [7],
age [8], and BMI [9, 10]. However, the primary focus of
this section is to summarize the findings regarding genetic
influences on muscle size and strength at baseline and
following RT. Twin and other genetic studies have reported
wide-ranging estimates of heritability for baseline human
muscle size (ℎ2 ∼ 45–90%) and strength (ℎ2 ∼ 30–85%) in
a large part dependent upon the population and muscle
group studied [11–13]. In addition to genetic influences on
the development of muscle strength and size, there are other
factors (i.e., training protocols, diet, etc.) that can modify the
adaptive response of muscle to exercise training, such that
even wider estimates of heritability are seen for hypertrophy
and strength gains (ℎ2 ∼ 35–85%) [11–13].

To date, the FAMuSS group has published results for 17
genes specifically tested for association with muscle strength
or size that are summarized in Table 1 [14–26]. These genes
can be categorized according to their biological functions,
including muscle structural elements, growth factors, and
inflammatory factors. Examples of structural genes include
ACTN3 (actinin, alpha 3) [14] and BMP2 (bone morpho-
genetic protein 2) [15]; growth factors include GDF8 [growth
differentiation factor 8 (myostatin,MSTN)] [20], FST (follis-
tatin) [20], and IGF1 (insulin-like growth factor 1) [21]; and
inflammatory factors include CCL2 [chemokine (C-C motif)
ligand 2] [17], IL15 (Interleukin 15) [23], IL15R𝛼 (interleukin
15 receptor, alpha) [23], and SPP1 (osteopontin or secreted
phosphoprotein 1) [18], among others. A few genes fromother
biological function families (mainly related to blood flow
and angiogenesis) have also been investigated that include
ACE (angiotensin I converting enzyme) [19] andNOS3 (nitric
oxide synthase 3) [16].

One structural gene variation that has garnered much
attention is the common R577X (rs1815739) mutation in
ACTN3 [27], a premature stop codon that essentially elimi-
nates ACTN3 protein expression in individuals with the XX

(nonancestral) genotype.The ACTN3 protein is a sarcomeric
actin-anchor expressed exclusively in Type II muscle fibers.
The loss of this protein has been associated with athletic
performance, such that the frequency of the mutation is
underrepresented in elite power athletes and overrepresented
in endurance athletes [28]. While animal knockout models
have suggested compensatory upregulation of the similar
alpha actinin 2 (Actn2) gene and possible alterations in
aerobic energy pathway elements [29, 30], these are yet to be
confirmed in human studies.

A myriad of studies have examined the effect of ACTN3
R577X genotype on athletic parameters, with widely varying
results. Many of these studies suffer from having inadequate
sample sizes and are often done in subjects that have varied
exercise-training experiences, which can greatly overshadow
subtle genotype effects. We reported significant sex-specific
findings formuscle strength, but not size, among 602 subjects
(247 men; 355 women) from FAMuSS [14]. Women with the
XX genotype had lower baseline MVC but greater increases
in dynamic strength as compared to women with the RX
genotype. In addition, among women, ACTN3 accounted for
2.2% of variability in baselineMVC and 1.8% of the variability
in 1RM gain.

The FAMuSS group has reported genetic associations in
several growth related genes in relation to both baseline
and posttraining muscle traits [15, 20, 21]. Skeletal mus-
cle growth and protein synthesis are controlled by several
key signaling pathways, such as the phosphatidylinositol-3-
kinase (PI3 K)/protein kinase B (AKT)/mammalian target of
rapamycin (mTOR) pathway. IGF1 positively controls this
pathway via initiation of signaling at the cell surface, affecting
protein synthesis rates. Conversely, MSTN and its related
genes are negative regulators of muscle growth via inhibition
of the PI3 K/AKT/mTOR signaling pathway. Animal models
in which MSTN expression is greatly reduced exhibit gross
muscle hypertrophy [31].

In the FAMuSS cohort, Kostek et al. [21] found associa-
tions of one particular promoter mutation in IGF1 (rs35767)
with muscle measures. Caucasian women with the CT geno-
type had greater baseline dynamic strength compared to the
two other genotype groups.

In another study, Kostek et al. [20] found ethnicity-
specific associations betweenMSTN (rs1805086) and muscle
traits. A small group of African Americans showed greater
baseline MVC in those with the G allele (𝑁 = 15) as com-
pared to subjects with the AA genotype (𝑁 = 8), while
no associations were found among Caucasians (𝑁 = 645).
They also found associations between FST (rs722910) and
strength measures among African Americans but not Cau-
casians. Finally, Devaney et al. [15] described associations
between muscle size and a common polymorphism in BMP2
(rs15705), which is known to inhibit myogenic differentiation
[32]. Following RT, subjects with the CC genotype (𝑁 = 10)
had significantly greater muscle volume gains compared to
A allele carriers (𝑁 = 179), with 3.9% of trait variation ex-
plained by BMP2. Devaney et al. [15] noted that reporter
assays specific for each allele showed that the C allele dis-
rupted a posttranslational regulatorymotif, possibly resulting
in reduced inhibition, thereby allowing more muscle growth.
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Table 1: FAMuSS findings: genetic loci associated with muscle size and strength at baseline and in response to resistance training.

Gene Name Reference
ACE Angiotensin I converting enzyme [19]
ACTN3 Actinin, alpha 3 [14]
ANKRD6 Ankyrin repeat domain 6 [24]
BMP2 Bone morphogenetic protein 2 [15]
CCL2 Chemokine (C-C motif) ligand 2 [17]
CCR2 Chemokine (C-C motif) receptor 2 [17]
CNTF Ciliary neurotrophic factor [26]
FST Follistatin [20]
GDF8/MSTN Growth differentiation factor 8/myostatin [20]
IGF1 Insulin-like growth factor 1 [21]
IL15 Interleukin 15 [23]
IL15R𝛼 Interleukin 15 receptor, alpha [23]
LEP Leptin [25]
LEPR Leptin receptor [25]
NOS3 Nitric oxide synthase 3 [16]
RETN Resistin [22]
SPP1 Osteopontin or secreted phosphoprotein 1 [18]

BMP2 can be considered both a growth-related gene and
an inflammation-related gene, based on its role in the trans-
forming growth factor beta (TGFB) pathway. Inflammation
and growth pathways have substantial overlap, fitting with
the idea that postdevelopmental growth is in large part mod-
ulated by environmental stimuli such as exercise. Exercise
that evokes the inflammatory system, such as loadingmuscles
with lengthening (eccentric) muscle actions, often produces
the greatest size gains [33].

Other key inflammatory genes investigated in FAMuSS
for associations with muscle strength and size include IL-
15, IL15R𝛼, and SPP1. Pistilli et al. [23] reported associations
between IL15R𝛼 (rs2228059) and baseline muscle size in men
but not women. This report also showed various relation-
ships among IL15 or IL15R𝛼 and strength gains, including
IL15 (rs1057972) with strength gains in men and IL15R𝛼
(rs2296135) with strength gains in women. Most recently,
Hoffman et al. [34] reported a stronger association than is
normally observed for exercise genomic studies between SPPI
(rs28357094) and muscle size gains in women but not men
[35]. The G allele was associated with increased size gains
in women following RT, explaining a relatively high 5% of
variance in the response.

In conclusion, despite the relatively strong association
Hoffman et al. [34] observedwithmuscle size gains inwomen
with SPP1 after RT, in general, single variants explained
minor trait variability percentages in baselinemuscle size and
strength and the response of these phenotypes to RT in the
FAMuSS study [35]. Although it is possible that interactions
between multiple genetic loci could have accounted for
more trait variability [36, 37]. These genotype-phenotype
associations were also often sex specific. From a clinical
standpoint, genetic modifiers of muscle size and strength are
already being studied in relation to management of various

myopathies. For example, SPP1 is a knownmodifier of disease
severity in Duchenne muscular dystrophy [18]. Further stud-
ies into genetic influences on muscle size and strength (and
their response to exercise training) will inform treatment
options given an individual’s genetic background, an example
of personalized medicine. While these studies often involve
muscle at pathological ends of the muscle size and strength
spectra, FAMuSS findings provide a very valuable window
into variant influences in “normal” (i.e., nonpathological)
subjects. In addition, athletes will also seek advantage over
their opponents using genomic medicine techniques such as
exon-skipping to restore dystrophin expression in Duchenne
muscular dystrophy that increases “natural” muscle size and
strength possibly improving performance [38].

5. FAMuSS Findings: Body Composition and
Cardiometabolic Biomarkers

As part of the FAMuSS study, body composition measure-
ments were made such as BMI and MRI-dictated volumes
of subcutaneous fat and bone of the upper arms before and
after RT. In addition, before RT, measures of fasting glucose,
insulin, total cholesterol, LDL, HDL, and triglyceride levels
were made, and the HOMA was calculated [6]. To date, the
FAMuSS group has published results for 33 genes specifically
tested for association with measures of body composition at
baseline and in response to RT and baseline cardiometabolic
biomarkers that are summarized in Table 2 [22, 23, 39–43].
Some of these genes were also examined for skeletal muscle
phenotypes pre- and post-RT that were described in the
previous section and habitual physical activity that will be
described in the next section so that only the findings relating
to body composition and cardiometabolic biomarkers will be
discussed in this section.
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Table 2: FAMuSS findings: genetic loci tested for association with body composition at baseline and in response to resistance training and
cardiometabolic biomarkers at baseline∗.

Gene Name Reference
AKT1 V-akt murine thymoma viral oncogene homolog 1 [39]
ANGPT3 Angiopoietin-like 3 [40]
BCL7B B-cell CLL/lymphoma 7B [40]
BMP2 Bone morphogenetic protein 2 [40]
CDKAL1 CDK5 regulatory subunit associated protein 1-like 1 [40]
CDKN2A/2B Cyclin-dependent kinase inhibitor 2A and 2B [40]
CDKN2BAS/CDNKN2B-AS1
(ANRIL) CDKN2B-AS1 CDKN2B antisense RNA 1 [40]

CILP2 Cartilage intermediate layer protein 2 [40]
FTO Fat mass and obesity associated [42]

GALNT2 UDP-N-acetyl-alpha-D-galactosame:polypeptide
N-acetylgalactosaminyltransferase 2 [40]

GNPDA2 Glucosamine-6-phosphate deaminase 2 [42]
HHEX Hematopoietically expressed homeobox [40]
HNF1A HNF1 homeobox A [40]
IGFBP2 Insulin-like growth factor binding protein 2 [40]
IL15 Interleukin 15 [23]
IL15R𝛼 Interleukin 15 receptor, alpha [23]
INSIG2 Insulin-induced gene 2 [41]
KCTD10 Potassium channel tetramerisation domain containing 10 [40]
KCTD15 Potassium channel tetramerisation domain containing 15 [42]
KCNJ11 Potassium inwardly rectifying channel, subfamily J, member 11 [40]
MC4R Melanocortin-4 receptor [42]
MRAS Muscle RAS oncogene homolog [40]
MTCH2 Mitochondrial carrier 2 [42]
NEGR1 Neuronal growth regulator 1 [42]
PPAR𝛼 Peroxisome proliferator-activated receptor alpha [43]
PPARG2 Peroxisome proliferator-activated receptor gama [40]
RETN Resistin [22]
SH2B1 SH2B adaptor protein 1 [42]
SLC30A8 Solute carrier family 30, member 8 [40]
SORT1 Sortilin 1 [40]
TCF7L2 Transcription factor 7-like 2 [40]
TMEM18 Transmembrane protein 18 [42]
TRIB1 Tribbles pseudokinase 1 [40]
∗Bolded genes were significantly associated with the phenotypes of interest.

The metabolic syndrome is considered to be a pre-
diabetic state, with elevated values for three out of five of
the following cardiometabolic risk factors: blood pressure,
waist circumference, blood glucose, triglycerides, and HDL
[44].Themetabolic syndrome predisposes people to diabetes
mellitus and cardiovascular disease. The FAMuSS study
collected these cardiometabolic biomarkers among young,
healthy adults, an optimal time for the implementation of
lifestyle interventions to prevent disease progression [44, 45]
as well as avoid the confounding effects of aging and its
associated comorbidities on heritability [35].

Pistilli et al. [22] examined the influence of RETN
(Resistin), a gene that has a potential role in inflammatory
processes and metabolic diseases such as obesity, diabetes
mellitus, and cardiovascular disease [46] on measures of
body composition at baseline and in response to RT. RETN
variants (rs34124816, rs1862513, rs3219177, rs3745367, and
rs3219178) were strongly associated with muscle strength and
muscle, bone, and fat volume phenotypes inmen andwomen,
but only when stratified by a BMI ≥ 25 kg⋅m−2, and they
explained a relatively strong proportion of the variance in
these phenotypes ranging from 7% to 12%. This study is
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evidence of the complex interactions that can exist among
genes and measures of body composition [35].

BMP2 (bone morphogenetic protein 2) regulates the
differentiation of pluripotent mesenchymal cells and inhibits
myogenesis. In addition, high BMP2 levels promote osteoge-
nesis or chondrogenesis and low levels promote adipogenesis.
The interrelationships of muscle, fat, and bone cell deposition
are key factors in both normal morphologic variation and
a variety of medical conditions including the metabolic
syndrome, vascular calcification, and osteoporosis [47, 48].
Devaney et al. [15] discovered sex-specific associations with
BMP2 (rs15705) and baseline subcutaneous fat volume and
the response of subcutaneous fat and bone volume to RT. In
addition, BMP2 explained 2–4% of the variability in these
phenotypes.

Due to rapid advances in field of genomics, new genetic
tools became available while FAMuSS was being conducted.
Thiswork stemmed from two important achievements: (1) the
completion of the Human Genome Project and (2) provision
of an initial catalogue of human genetic variation and a
haplotype map (HapMap, http://hapmap.ncbi.nlm.nih.gov/)
[49]. These two important achievements coupled with the
rapid improvements in genotyping technology and analy-
sis led to genome wide association studies (GWAS). The
FAMuSS study sought to leverage GWAS studies for variants
that were identified to be associated with BMI and type 2
diabetesmellitus.We utilized the FAMuSS study to determine
if these GWAS-identified variants would be associated with
baseline adiposity, bone, and skeletal muscle phenotypes and
the response of these phenotypes to RT as measured by MRI.
In addition, we asked the question “doGWAS variants associ-
ated with BMI, lipid phenotypes, type 2 diabetesmellitus, and
other cardiometabolic risk factors and diseases affect how an
individual responds to exercise?”.

Orkunoglu-Suer et al. [41] examined one of the first
variants identified using GWAS that was associated with
obesity as denoted by BMI, INSIG2 (insulin-induced gene 2)
(rs7566605), for association with baseline subcutaneous fat
volume and the response of this phenotype to RT.They found
sex-specific associations with INSIG2 and subcutaneous fat
volume at baseline and in response to RT that accounted for
<1–2.3% of the variance in subcutaneous fat volume.

GWASwas utilized to identify eight SNPs associated with
BMI that highlighted a possible neuronal influence on the
development of obesity [50]. These variants were FTO (fat
mass and obesity associated) (rs9939609), GNPDA2 (glu-
cosamine-6-phosphate deaminase 2) (rs10938397), KCTD15
(potassium channel tetramerisation domain containing 15)
(rs11084753), MC4R (melanocortin-4 receptor) (rs17782313),
MTCH2 (mitochondrial carrier 2) (rs10838738), NEGR1
(neuronal growth regulator 1) (rs2815752), TMEM18 (trans-
membrane protein 18) (rs6548238), and SH2B1 (SH2B adap-
tor protein 1) rs7498665). Orkunoglu-Ser et al. [42] found
sex-specific associations with MC4R (rs17782313) and BMI;
TMEM18 (rs6548238) and baseline subcutaneous fat vol-
ume; and FTO (rs9939609) and SH2B1 (rs7498665) and the
response of subcutaneous fat volume to RT. Collectively,
these variants explained <1-2% of the variance in these body
composition phenotypes.

The first gene examined in FAMuSS for associations
with cardiometabolic phenotypes was PPAR𝛼 (peroxisome
proliferator-activated receptor alpha) that is involved
in adipocyte differentiation and lipid and lipoprotein
metabolism [43]. Studies in mice have shown that PPAR𝛼-
deficient animals were unable to metabolize lipids and
develop late onset obesity even when kept on a stable diet
[51, 52]. Uthurralt et al. [43] examined one of themost studied
PPAR𝛼 variants, a missense SNP in exon five that results
in the amino acid substitution, leucine 162 valine (L162V;
rs1800206). Uthurralt et al. [43] found European-American
men with the V allele had higher baseline triglyceride levels
and arm subcutaneous fat volume and lower HDL and
tended to increase arm subcutaneous fat volume following
RT compared to men with the LL genotype. The strength of
the association with triglycerides was noteworthy with the V
allele accounting for 4% of the variance.

IL-15 has influence onmuscle-to-adipose tissue pathways
as well as lipid and glucose metabolism [53]. Pistilli et al.
[23] examined associations among genetic variants in IL-
15 and its receptor IL-15R𝛼 with baseline cardiometabolic
biomarkers and skeletal muscle, subcutaneous fat, and
bone phenotypes at baseline and in response to RT. Sex-
specific associations were found with IL-15 and baseline total
cholesterol (rs1589241), LDL (rs1589241), HOMA (rs1589241),
BMI (rs1057972), glucose (rs1057972), and triglycerides
(rs2228059) levels. In addition,men showed associationswith
IL-15 and IL-15𝛼 and baseline total bone volume (rs2296135)
and cortical bone volume (rs2228059) as well as measures of
muscle volume (rs2228095) and strength (rs1057972).

Converging lines of evidence suggested that AKT1 (V-
akt murine thymoma viral oncogene homolog 1) was a major
mediator of the responses to insulin, IGF1, and glucose. In
addition, AKT1 has a key role in the regulation of muscle
cell hypertrophy and atrophy. Devaney et al. [39] sought
to validate associations with AKT1 and metabolic syndrome
phenotypes found in FAMuSS within three other study
populations [Strong Heart Study (SHS) (𝑛 = 2,134; 55.5 ± 7.9
years), Dynamics of Health, Aging and Body Composition
(Health ABC) (𝑛 = 3,075; 73.6 ± 2.9 years), and Studies of
a Targeted Risk Reduction Intervention through Defined
Exercise (STRRIDE) (𝑛 = 175; 40–65 years)]. They found
that a three-SNP (rs1130214, rs10141867, and rs33926946)
AKT1 haplotype (i.e., a specific combination of neighboring
alleles that tend to be inherited together) associated with
fasting glucose levels among women in FAMuSS and with
other metabolic phenotypes among women and men in
the other three study populations. This study was an early
attempt by the FAMuSS study investigators to functionally
validate genetic associations that were previously discovered,
for the validation of phenotype-genotype associations is an
important prerequisite to better understand disease risk and
provide therapeutic interventions that are often lacking in the
field of exercise genomics [36].

Devaney et al. [40] analyzed 20 GWAS-identified SNPs
associated with cardiometabolic risk factors in younger pop-
ulations that included FAMuSS and a cohort of 6th grade chil-
dren (Cardiovascular Health Intervention Program; CHIP).
They established that the 1p13.3 LDL locus (rs646776) (near
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SORT1, sortilin 1) was associated with LDL in both of these
young populations.The variance accounted for by SORT1was
considerably higher in these young populations (2.5%–4.1%)
compared to older subjects from GWAS studies (1%).

In summary, the FAMuSS study discovered and vali-
dated numerous loci for associations with measures of body
composition and cardiometabolic biomarkers. The genetic
variants we examined explained <1–12% of the variance in
the phenotypes examined suggesting these traits are highly
polygenic with many loci contributing to a very small pro-
portion of the variation. Furthermore, many of the genotype-
phenotype associations were sex specific. More recently, the
FAMuSS study began to mine GWAS studies to find, explore,
and in some instances validate the impact of identified loci
on a younger population that represents a critical period for
therapeutic intervention as well asminimize the confounding
effects of age on these phenotypes. In this way, the variance
accounted for by genotype was higher in FAMuSS than
GWAS that typically involve older subjects.

6. FAMuSS Findings: Physical Activity

Examining genetic variants that associatewith habitual physi-
cal activity termed physical activity geneticswas not a primary
purpose of FAMuSS. Nonetheless, FAMuSS presented us with
the opportunity to contribute to a growing body of literature
showing the effect-mediation genetic variants associated
with physical activity may have on chronic diseases and
health conditions such as type 2 diabetes mellitus [54, 55],
hypertension [36], and in the case of FAMuSS, overweight
and obesity [41, 42, 56–59].

Over 67% of Americans are overweight to obese [60].
Physical inactivity is a major contributor to overweight and
obesity as 74% of Americans do not meet the physical activity
recommendations for weight maintenance [61]. It is of inter-
est that the control of voluntary movement resides in similar
central neural pathways as energy intake, emphasizing the
role of the central nervous system in the regulation of energy
expenditure and intake, and ultimately weight control [50,
59]. The redundancies in the etiology and control of physical
activity and obesity led us to test the hypothesis that genetic
variants associated with obesity will associate with physical
activity phenotypes derived from the Paffenbarger Physical
Activity Questionnaire among the FAMuSS cohort.

The 11 genes reported to be associated with obesity phe-
notypes [25, 42, 50, 56, 58, 62, 63] that were tested for specific
associationwith physical activity in FAMuSS are summarized
in Table 3. Our work has revealed genotype differences in
physical activity energy expenditure that ranged from about
500 to 2000 kcal⋅wk−1 that were dependent upon BMI, sex,
and intensity or the level of physical exertion.These genotype
differences have public health importance, equating to a
potential weight gain or loss of 7–29 lb⋅yr−1. Furthermore,
genotype accounted for ∼1–5% of the variance in physical
activity phenotypes substantiating the polygenetic influence
on physical activity, and the large amount of heritability that
remains unaccounted for [37].

Understanding the interactions between genetic variants
associated with obesity and physical activity will provide

Table 3: FAMuSS findings: genetic loci associated with habitual
physical activity.

Gene Name Reference
ANKRD6 Ankyrin repeat domain 6 [24]
FTO Fat mass and obesity associated [42]
GHRL Ghrelin [64]

KCTD15 Potassium channel tetramerisation
domain containing 15 [42]

LEP Leptin [25]
LEPR Leptin receptor [25]
MC4R Melanocortin-4 receptor [42]
NEGR1 Neuronal growth regulator 1 [42]
NOS3 Nitric oxide synthase 3 [16]
SH2B1 SH2B adaptor protein 1 [42]
TMEM18 Transmembrane protein 18 [42]

insight into the causes and treatments of overweight and
obesity. Our vision is that this research may eventually
have important implications for a personalized approach
to the prescription of physical activity for the treatment of
overweight and obesity. For example, prescribing physical
activity to reduce weight or maintain weight loss will be more
effective if clinicians are able to create a unique prescription
that targets the type or amount of physical activity an indi-
vidual prefers to engage in based upon their genetic makeup.
The vision is that such a personalized exercise prescription
based upon this genetic information would facilitate physical
activity adoption and adherence for that person [16, 24, 25,
35, 41, 42]. Nonetheless, due to the significant challenges
in identifying genes and their regulatory factors that may
influence overweight and obesity and their interactions with
physical activity, a personalized approach for the prescription
of physical activity for the treatment of this major public
health epidemic is not evident for the immediate future.

7. Take-Home Messages, Future Directions,
and Conclusions

The FAMuSS study was an attempt to understand the genetic
causes behind the response of muscle to an external stim-
ulus, RT. The aims of the FAMuSS project were to utilize
molecular biology to answer two questions: (1) can genetic
variation explain differences in skeletal muscle size and
strength? and (2) can genetic variation explain how skeletal
muscle responds to RT? To date, the FAMuSS group has
published results for 17 genes tested for association with
muscle strength or size that have been categorized according
to their biological functions that include muscle structural
elements, growth factors, and inflammatory factors (Table 1).
In general, single variants explained minor trait variability
in baseline muscle size and strength and the response of
these phenotypes to RT, indicating a polygenetic influence on
these complex phenotypes, andmany of thesemuscle size and
strength genotype associations were sex specific. Moreover,
FAMuSS findings have provided a very valuable window into
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variant influences in “normal” (i.e., nonpathological) young,
healthy subjects.

In addition to its primary purpose, the FAMuSS group
has published results for 33 genes tested for association with
measures of body composition and their response to RT and
baseline cardiometabolic biomarkers (Table 2) as well as 11
obesity genes tested for association with habitual physical
activity levels (Table 3). The genetic variants that emerged
from these analyses explained <1–12% of the variance in
the phenotype examined, once again suggesting these traits
are highly polygenic with many loci contributing a very
small proportion of the variation, and these phenotype-
genotype associations were often sex specific. More recently,
the FAMuSS study mined GWAS studies to find, explore,
and in some instances validate the impact of GWAS-
identified loci on body composition and cardiometabolic
biomarkers among a young population. In this way, the
variance accounted for by genotype was higher in FAMuSS
than GWAS involving older subjects partially due to the
confounding effects of age being less in younger populations.

One persistent effect modifier of FAMuSS findings has
been sex differences in the various phenotypes examined at
rest and in response to RT. Hubal et al. [7] provided a detailed
analysis of the variance of muscle strength and size responses
in men and women to the 12 wk unilateral RT program,
noting similar distributions in size gains (thoughmen gained
slightlymoremuscle volume than women in the trained arm)
(Figure 1), but more variability in strength gains in women
(as well as greater relative strength gains) (Figure 2). This
increased variance inwomen for strength gains could account
for some of the sex differences in the various phenotypes
found in FAMuSS, as more high or low responders in a
population could denote greater genetic influences. It is also
possible that the greater amounts of androgens in men could
account for a larger percentage of variation in responses,
lowering the variance left to be accounted for by genetic
factors. Furthermore, the response of a phenotype is often a
function of baseline values that also varied by sex in FAMuSS
[65]. In any case, sex-specific findings in genetic association
studies are rather common, stemming from the large effect
that biological sex has on a wide variety of phenotypes [35].

Our vision when we began FAMuSS was that with the
identification of genetic variants that play a role in the normal
response of muscle to external stimuli such as RT we would
be able to better inform the sports world to maximize athletic
performance and, more importantly, provide insight into
disease processes—permitting the possibility of new thera-
peutics to treat neuromuscular disorders and other diseases
and health conditions via a personalized medicine approach.
What we have come to realize is that the journey to establish
a personalized medicine approach to the treatment of disease
that may also include a personalized approach to exercise
prescription as lifestyle therapy was far more complex than
anyone envisioned in 2001. Knowing what we have learned
from the FAMuSS study and with the rapid advancement
of technology since FAMuSS began in 2001, if we were to
perform FAMuSS Part 2, we would (1) perform a GWAS
and/or whole exome sequencing; (2) use an “interomic”
approach to also measure the transcriptome, proteome, and

metabolome at baseline and in response to RT to better
capture gene expression; and (3) use bioinformatics combin-
ing quantitative with systems biology to conduct pathway
analyses to elucidate mechanisms for the heritable factors
and phenotype associations that emerge. Such an “interomic”
bioinformatic approach would require a multidisciplinary
team that has expertise in quantitative and systems biology
as well as exercise physiology and preventive medicine.
Nonetheless, FAMuSS has and will continue to have an
important role in the journey to establish a personalized
medicine approach to prevent, treat, and control disease as
well as the development of new andmore effective therapeutic
options that will eventually be able to be prescribed on amore
individualized basis.
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