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Applications of the Wei-Lachin Multivariate One-Sided
Test for Multiple Outcomes on Possibly Different Scales
John M. Lachin*

The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America

Abstract

Many studies aim to assess whether a therapy has a beneficial effect on multiple outcomes simultaneously relative to a
control. Often the joint null hypothesis of no difference for the set of outcomes is tested using separate tests with a
correction for multiple tests, or using a multivariate T2-like MANOVA or global test. However, a more powerful test in this
case is a multivariate one-sided or one-directional test directed at detecting a simultaneous beneficial treatment effect on
each outcome, though not necessarily of the same magnitude. The Wei-Lachin test is a simple 1 df test obtained from a
simple sum of the component statistics that was originally described in the context of a multivariate rank analysis. Under
mild conditions this test provides a maximin efficient test of the null hypothesis of no difference between treatment groups
for all outcomes versus the alternative hypothesis that the experimental treatment is better than control for some or all of
the component outcomes, and not worse for any. Herein applications are described to a simultaneous test for multiple
differences in means, proportions or life-times, and combinations thereof, all on potentially different scales. The evaluation
of sample size and power for such analyses is also described. For a test of means of two outcomes with a common unit
variance and correlation 0.5, the sample size needed to provide 90% power for two separate one-sided tests at the 0.025
level is 64% greater than that needed for the single Wei-Lachin multivariate one-directional test at the 0.05 level. Thus, a
Wei-Lachin test with these operating characteristics is 39% more efficient than two separate tests. Likewise, compared to a
T2-like omnibus test on 2 df, the Wei-Lachin test is 32% more efficient. An example is provided in which the Wei-Lachin test
of multiple components has superior power to a test of a composite outcome.
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Introduction

In many studies an objective is to assess whether an

experimental therapy (E) versus control (C) has beneficial effects

on multiple component outcomes. This is becoming increasingly

common in the evaluation of the comparative effectiveness of

therapies. For example, the NIDDK-funded ‘‘Glycemia Reduc-

tion Approaches in Diabetes: A Comparative Effectiveness’’

(GRADE) Study will compare four agents commonly used to

control glucose levels in type 2 (adult) diabetes [1], clinicaltrials.-

gov NCT01794143. The primary objective is to evaluate the

durability of glucose control over 3–6 years of treatment, the

primary outcome being the time to a confirmed rise of HbA1c (a

measure of average glucose levels) $7% (the therapeutic target

being a value ,7%) using a logrank test. A secondary outcome is

to compare each pair of treatments with respect to multiple

components of effectiveness, specifically whether one treatment is

superior to the other with respect to durability of control (event-

times), absence of hypoglycemia over 3 years of treatment

(proportions), and a lower mean body weight at 3 years. Herein

we describe how such a test could be conducted and evaluate the

power of the test or the required sample size.

For illustration, throughout we consider the case of two

outcomes, say A and B, although all the procedures herein

generalize to $2 outcomes. We wish to test the null hypothesis H0:

(AE;AC)>(BE;BC) that the experimental therapy is equivalent to

control for both outcomes versus the alternative H1:

(AE]AC)\(BE]BC) with at least one strict superiority, where

‘‘;’’ means equality for an outcome and where ‘‘]’’ means

superiority. The test against such an alternative is called a

multivariate one-directional (or one-sided) test.

Wei and Lachin [2] proposed a simple 1 df test for such a

hypothesis that was described as a test against an ordered

alternative, or a test of stochastic ordering. The test was later

studied by Lachin [3] and Frick [4,5]. Herein the application of

this test to multiple outcomes is described for a test of means, a test

of proportions, a test of event times and a test with mixed

components such as where one outcome is quantitative (using

means) and another qualitative (using proportions). For each

application, equations are also derived for evaluation of sample

size and power of the test. Multiple model-based tests are also

described. For an analysis of multiple mean differences we show

that the Wei-Lachin test is more powerful than an analysis based

on either separate tests for each outcome, multiplicity adjusted, or
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a multivariate T2-like omnibus test. An example from a major

clinical trial is presented.

Many other tests have also been proposed, principally in the

setting of tests for differences in means. These are reviewed in the

discussion section.

Wei-Lachin Multivariate One-Directional Test and Its
Power

Three versions of the Wei-Lachin test are described. The first

employs the measurements using the original scale of measure-

ment. This test, however, is not invariant to scale transformations

of the individual components. Two scale invariant tests are also

described, one based on standardized values and another based on

scale-independent Z-tests.

Scale-Based Test For Multiple Outcomes
Let Xij designate the jth outcome variable in the ith group with

expectation E(Xij) = mij, i = E, C; j = a, b. The subscripts a, b are

used through out to refer to the two outcomes. The jth outcome

could be a quantitative measure or a binary variable (among

others). Assume that a more favorable outcome is represented by a

decreasing expectation for X. Let

da~mCa{mEa ð1Þ

db~mCb{mEb:

A positive value for each represents a beneficial effect of the

experimental therapy over control for each outcome, and a

negative value represents lack of benefit. The null and alternative

hypotheses of interest are

H0 : da~0 and db~0 ð2Þ

H1S : da§0 and db§0 and sum(da,db)w0:

Thus, H1S designates that the experimental therapy is at least as

effective as control for both outcomes and is superior to control for

either or both outcomes. This is called the multivariate one-

directional hypothesis.

In the context of an analysis of repeated measures, or

multivariate observations, Wei and Lachin [2] described a

multivariate one-directional test, what they termed a test of

stochastic ordering, i.e. a test of the null hypothesis that is directed

towards an alternative hypothesis of the form H1S in (2). Lachin

[3,6] contrasts this test with other tests, such as the omnibus test.

Consider group-specific estimates m̂mij with expectation mij. Let d̂da

and d̂db designate the estimates of the difference between the

groups for each outcome as defined in (1), and D̂D~(d̂da d̂db)’, where

‘‘9’’ designates the transpose. With large samples

D̂D*N (D,S): ð3Þ

with expectation D~(da db)’ and with a covariance matrix S that

is consistently estimable with elements

S~
s2

a~V (d̂da)

sa b

sab~Cov(d̂da,d̂db)

s2
b~V (d̂db)

" #
: ð4Þ

The Wei-Lachin test is then provided by

ZS~
J’D̂Dffiffiffiffiffiffiffiffiffiffi
J’ŜSJ

p ~
d̂dazd̂db

ŝsS

, ð5Þ

ŝs2
S~V̂V (d̂dazd̂db)~ ŝs2

azŝs2
bz2ŝsab

� �
using consistent estimates of the variances and covariance, where

J~(1 1)’. Asymptotically ZS*N(0,1) under H0 from Slutsky’s

theorem. The test rejects H0 in favor of H1S when ZS§Z1{a at

level a one-sided. The above generalizes to K.2 outcomes. Note

that the test can also be obtained from the unweighted average of

the group differences relative to its standard error that provides a

convenient average measure of the group differences when all

outcomes are measured on the same scale.

Specific applications include a large sample test of means [3] or

proportions [7], a generalized linear regression model using quasi

likelihoods with a covariance matrix estimated using the informa-

tion sandwich, i.e. GEE [8]; or a normal errors model for the

analysis of repeated measures [9]; or a proportional hazards model

using the information sandwich [10]; or these estimates can be

based on a distribution-free estimate such as the Mann-Whitney

difference that provides a Wilcoxon test [3,11] with the Wei-

Lachin [2] estimate of the covariance matrix. These and other

methods allow for some observations for some outcomes in some

subjects to be missing either completely at random or at random

(conditionally).

Although often termed a multivariate one-directional (one-

sided) test, it is possible to conduct a two-sided one-directional test

that either E is superior to C for all components, or C is superior to

E. In that case, the Wei-Lachin 1 df test statistic is referred to the

two-sided critical value rather than the one-sided value. Herein we

describe the one-sided test.

If beneficial values of Xa are lower, but those for Xb are higher,

such as for a test of LDL and HDL, respectively, then the test

would be constructed using the negative of the values for Xb such

that db~mEb{mCb. If higher values of both measures demonstrate

benefit for the treatment, then both da and db can be defined as

the difference of treated minus control.

This test would be appropriate when all of the outcome

measurements were on the same scale; for example, as for a test of

a beneficial effect on both systolic and diastolic blood pressure

(both mm Hg), or a test of a beneficial effect on both LDL and

HDL (both mg/dl). Other variations described below would be

appropriate for outcomes with different variances, or measures on

different scales or mixtures of different types of measures, such as

A being a quantitative variable and B being a binary variable.

An alternative approach commonly applied to test the

superiority of an experimental therapy is to base the inference

on the two separate one-sided tests. These tests would require a

correction for multiple tests such as using the Holm [12] improved

Bonferroni procedure which requires that the minimum of the two

p-values be #0.025 (one-sided) and the other #0.05 in order to

declare significance at the 0.05 level for the two tests. The

corresponding alternative hypothesis is

Wei-Lachin Multivariate One-Sided Test for Multiple Outcomes
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H1P : ½daw0 and=or dbw0�:6 H1S: ð6Þ

However, the alternative H1P includes the case where the

experimental therapy is beneficial for one outcome but harmful for

the other, such as where daw0 and dbv0 or vice versa.

Yet another possible test would be the omnibus test using a T2-

like test of the null hypothesis H0 versus

H1O : ½da=0 and=or db=0�:6 H1S: ð7Þ

that is provided by

X 2
O~D̂D’ŜS{1D̂D ð8Þ

which is asymptotically distributed as chi-square on 2 (or more

generally K) df. This is likewise inappropriate because the

alternative includes cases where the experimental therapy is worse

than control for either or both outcomes.

Maximin Efficiency of the Wei-Lachin Test
For the case of two measures as herein, the restricted alternative

multivariate one-dimensional hypothesis H1S in (2) corresponds to

all points in the positive orthant of the two-dimensional parameter

space for (da,db). Since the test is a sum of the two estimates, the

rejection region is defined by the line of values (d̂da,d̂db) satisfying

ZS~Z1{a that simply connects the points (da,0) and (0,da) where

da~Z1{aŝsS . Thus the rejection region principally includes an

area of the positive orthant away from the origin, but also includes

elements of the sample space where either d̂dav0 or d̂dbv0, but not

both. With large sample sizes, the probability of such points is

negligible for true values (da,db) away from zero, i.e towards the

central projection (the 45u line) of the positive orthant. Lachin [6]

provides figures to illustrate these relationships.

For a given pair of values D1~(da1 db1)’ specifying a point in

the positive orthant (da1,db1), it is readily shown [13] that the

optimal likelihood ratio test of H0: D~(0 0)’ versus the point

alternative HD1
: D~D1 based on (3) is

x2
LR~

(D’1S{1D̂D)2

D’1S{1D1

ð9Þ

where x2
LR is distributed as chi-square on 1 df under H0. Note that

x2
LR is based on a weighted sum of the estimated differences

(D̂D)~(d̂da d̂db)’. Thus, for a given S, every point D1~(da1,db1) that

defines a unique alternative hypothesis value in the two

dimensional parameter space entails a different optimal linear

combination of the observed D̂D. Further, the same weights are

optimal for any alternative hypothesis defined by points propor-

tional to (da1=sa, db1=sb) with the same correlation, such as the

point (cda1=sa, cdb1=sb) for any c.0. This implies that the same

weights would be optimal for all points in the parameter space

falling on the vector projection defined by the specified

(da1=sa, db1=sb). Thus, there are an infinite number of alternative

hypotheses corresponding to all possible projections in the positive

orthant, each with a different optimal test.

Unfortunately it is not known which projection is optimal since

the actual parameter values (da,db) are unknown. However, Frick

[4,5] showed that the Wei-Lachin test is maximin efficient with

respect to whichever weighted test is in fact optimal under the

condition that ŜSJ§0. That is, among the family of linear

combinations of the estimates, the Wei-Lachin test minimizes the

loss in efficiency (power) relative to the unknown optimal linear

combination when this condition applies, in which case it is the

optimal robust linear test of H0S versus H1S. For two or more

measures with positive correlations, as would be the case under the

alternative hypothesis, Frick’s condition SJ§0 is satisfied.

When this simple condition does not apply, Frick [4] shows that

a simple weighted test is provided by

ZS,L~
L’D̂Dffiffiffiffiffiffiffiffiffiffiffi
L’ŜSL

p ð10Þ

that is also maximin efficient where L satisfies the restriction

L’ŜSJ~1. For a given ŜS, the vector L is obtained as L~B’ŜS where

B is the quadratic program solution to miny½y’ŜS{1y� under the

constraints that yi§0 Vi and y’J~1. This test will principally be

required in cases where the null hypothesis applies, or the

treatment is inferior for some of the component outcome

measures. A SAS program for this computation is available from

the author (see Discussion).

Scale-based Test for Multiple Means
To illustrate the construction of the Wei-Lachin test, consider a

large sample test for a difference between groups in the means of

two outcomes where it is assumed that Xij*f (mij ,y
2
ij) with some

distribution f where y2
ij~V (Xij) is the variance of the observations

for the jth outcome in the ith group, or the residual variance after

adjusting for other covariates, and yiab~Cov(Xia,Xib), i = E, C;

j = a, b. To simplify, assume that there is a common covariance

matrix in the two groups (homoscedasticity) with correlation

rab~yab=(yayb). Then asymptotically

X ia

X ib

 !
*N

mia

mib

� �
,

y2
a=nia

yab

niab

nianib

yab

niab

nianib

y2
b=nib

0@ 1A24 35 ð11Þ

where (nia, nib, niab) are the numbers in the ith group with

observed values for outcome A and B separately and jointly, i = E,

C [3].

Then d̂da~( �XXCa{ �XXEa) and d̂db~( �XXCb{ �XXEb) and D̂D~(d̂da d̂db)’ is

asymptotically distributed as in (3) with covariance matrix

S~

y2
a

1

nEa

z
1

nCa

� �
yab

nEab

nEanEb

z
nCab

nCanCb

� � yab

nEab

nEanEb

z
nCab

nCanCb

� �
y2

b

1

nEb

z
1

nCb

� �
26664

37775
~

s2
a sab

sab s2
b

" #
:

ð12Þ

where the variances y2
a, y2

b and covariance yab can be estimated

directly from the available observations [3] under the homosce-

dasticity assumption. The estimated variance of the sum of mean

differences is

ŝs2
S~V̂V (d̂dazd̂db)~ŝs2

azŝs2
bz2ŝsab: ð13Þ

Wei-Lachin Multivariate One-Sided Test for Multiple Outcomes
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These then provide the test statistic ZS in (5), or ZS,L in (10) if

Frick’s condition is not satisfied.

Standardized Score Test for Multiple Means
For an analysis of the means of quantitative variables, the Wei-

Lachin test ZS is not invariant to a change of scale for either of the

two measures. In cases where there is a mixture of quantitative

variables with different dispersions or units, such as LDL measured

in mg/dl and systolic blood pressure measured in mm Hg, it is

more meaningful to compute a scale-invariant test using the

average of the corresponding standardized differences. This might

also be preferred when the variances of the measures differ

substantially, even though measured on the same scale.

Let Yij denote the standardized value Yij~Xij=yj with

V (Yij)~1. Then the standardized difference between groups for

the jth outcome is

d̂dYj~ �YYCj{ �YYEj~( �XXCj{ �XXEj)=ŷyj~d̂dj=ŷyj ð14Þ

where D̂DY ~(d̂dYa d̂dYb)’ is asymptotically normally distributed with

expectation (da=ya db=yb)’ and covariance matrix

SY ~

1

nEa

z
1

nCa

rab

nEab

nEanEb

z
nCab

nCanCb

� � rab

nEab

nEanEb

z
nCab

nCanCb

� �
1

nEb

z
1

nCb

2664
3775: ð15Þ

The resulting standardized Wei-Lachin test is then provided by

ZS,Y ~
J’D̂DYffiffiffiffiffiffiffiffiffiffiffiffiffi
J’ŜSY J

p ~
d̂da=ŷyazd̂db=ŷyb

ŝsS,Y

ð16Þ

where

s2
S,Y ~

1

nEa

z
1

nCa

� �
z

1

nEb

z
1

nCb

� �
z

2rab

nEab

nEanEb

z
nCab

nCanCb

� � ð17Þ

that is consistently estimated from the estimate of the correlation

r̂rab. When the variances of the outcomes are equal (ŷya~ŷyb), then

ZS,Y ~ZS . With equal sample sizes and no missing values,

nia~nib~niab~n~N=2, (i~E,C), then

ZS,Y ~

ffiffiffiffiffi
N
p

d̂da=ŷyazd̂db=ŷyb

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8(1zr̂rab)

p : ð18Þ

As above, with positive correlations, Frick’s condition SY J§0 is

satisfied. If not, then the weighted test is provided by ZS,L using

D̂DY ~(d̂da=ŷya d̂db=ŷyb)’ and ŜSY in (10).

Z-Based Test
In some cases, it may be desired to conduct a test with mixtures

of quantitative and qualitative outcomes (or other types), e.g.

combining tests for means, proportions and/or life-times. In such

cases a multivariate one-directional test with respect to the

multiple outcomes can be obtained from a combination of the

individual Z-test values of the form

ZS,z~
zazzbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2z2Cov(za,zb)
p ð19Þ

where zj~d̂dj=ŝsj and the covariance matrix of the Z-tests (Sz) has

variances V(zj)~1 ( j~a,b) and Cov(za,zb)~Corr(d̂da,d̂db)~
sab

sasb

with elements from (12). If nia~nib~niab for i~E,C then

Cov(za,zb)~rab.

Under the alternative hypothesis where the components fd̂djg or

fzjg are expected to be positive, then the covariance will likewise

be expected to be positive and Frick’s condition SzJ§0 is readily

satisfied. If this condition is not be satisfied, we would use the test

ZS,L using Z~(zazb)’ and ŜSz in lieu of D̂D and ŜS in (10).

It should be noted that this Z-based test is analogous to the

Gastwirth [14] miximin efficient robust test (MERT) that is a

obtained using the sum of the extreme Z-tests from a set of tests

against a closed family of alternatives. For a family with only 2

alternatives (or tests), the MERT is equivalent to the above Z-

based test.

Comparison of the Tests for Means

When the variances are equal (ŷya~ŷyb), it can readily be shown

that the standardized scores test equals the scale-based test

(ZS~ZS,Y ) regardless of the sample sizes or sample fractions.

When the group sample sizes are equal with no missing values, it

can also be shown that the standardized scores test equals the Z-

based test (ZS,Y ~ZS,Z). When both the variances and sample

sizes are equal, then all three tests are equal.

Direct computation of the three tests (ZS , ZS,Y , ZS,z) over a

range of sample sizes, variances and group differences shows that

�ZZS,z w

1:009 �ZZS,Y w

1:032 �ZZS , i.e. with given proportionalities. Thus,

ZS,Y and ZS,z are virtually equivalent with

corr(ZS,Y ,ZS,z)~0:988 over the range of alternatives considered.

These two tests are about 3% greater than the scale-based test with

respective correlations of 0.977 and 0.953. Thus, on this basis the

standardized scores or Z-based test would appear to be preferable.

General Expressions for Power and Sample Size for the
Tests

For each variation of the test, expressions for the evaluation of

sample size and power are readily obtained. Under H1S with

specified values (da,db), let s2
S~V (d̂dazd̂db) that may be a function

of (da,db) depending on the underlying model. Also, let s2
S~w2

S=N

represent the factorization of this variance into a term w2
S and N.

Therefore, from standard equations [15], the power of the test to

reject H1S for specified values (da,db) is provided by

1{b~W(Z1{b) where

Z1{b~

ffiffiffiffiffi
N
p

(dazdb)

wS

{Z1{a ð20Þ

and where the variance s2
S is factored as

s2
S~

w2
S

N
~

w2
azw2

bz2wab

N

" #
ð21Þ

and the individual variances and the covariance are factored as

s2
a~w2

a=N, s2
b~w2

b=N, and sab~wab=N. Specific expressions are

Wei-Lachin Multivariate One-Sided Test for Multiple Outcomes
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presented below. Conversely, the sample size required to provide

power 12b to detect specified values (da,db) is provided by

N~
(Z1{azZ1{b)wS

dazdb

� �2

: ð22Þ

To evaluate these equations, is it necessary to provide the

components of w2
S , i.e. (w2

a, w2
b, wab), and to specify the values

(da,db) representing the minimal degree of superiority of treatment

both outcomes of clinical interest.

For the standardized scores test in (16) the variance is likewise

factored as s2
S,Y ~w2

S,Y=N . Then power is obtained from

Z1{b~

ffiffiffiffiffi
N
p

da=yazdb=ybð Þ
wS,Y

{Z1{a ð23Þ

and the required sample size from

N~
(Z1{azZ1{b)wS,Y

da=yazdb=yb

� �2

: ð24Þ

Likewise, for the Z-based test in (19), power is obtained from

Z1{b~

ffiffiffiffiffi
N
p

da=wazdb=wbð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2Corr(d̂da,d̂db)

q {Z1{a ð25Þ

and the required sample size from

N~
(Z1{azZ1{b)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2Corr(d̂da,d̂db)

q
da=wazdb=wb

24 352

ð26Þ

where Corr(d̂da,d̂db)~wab=(wawb). Expressions for the correlation

are provided below for specific cases.

Also, each of the above expressions for power can be expressed

as E(Z)~Z1{azZ1{b where E(Z) is also termed the non-

centrality parameter of the test. Thus, the first term on the right

hand side of (20), (23) and (25) is the respective expression for E(Z).

Sample Size and Power for Tests for Means
To assess sample size and power for a test, let E(nia nib

niab)~N(jia jib jiab) denote the expected numbers observed in

the ith group, where N is the total sample size in the two groups

with at least one observed measurement (not including any subject

missing both A and B measurements).

The Scale-Based Test

From (12), the covariance matrix Cov(d̂da d̂db) can be factored as

S~V=N where

V~

y2
a

1

jEa

z
1

jCa

� �
yab

jEab

jEajEb

z
jCab

jCajCb

� � yab

jEab

jEajEb

z
jCab

jCajCb

� �
y2

b

1

jEb

z
1

jCb

� �
26664

37775
~

w2
a wab

wab w2
b

" # ð27Þ

and s2
S~w2

S=N where

w2
S~

y2
a jEazjCað Þ

jEajCa

z
y2

b(jEbzjCb)

jEbjCb

"
z

2yab

jEab

jEajEb

z
jCab

jCajCb

� ��
:

ð28Þ

When the groups are of equal size with the same fractions

observed (jia jib jiab)~(ja jb jab) for i~E,C, then

w2
S~2

y2
a

ja

z
y2

b

jb

z
2yabjab

jajb

� �" #
ð29Þ

When there are equal-sized groups with no missing observations

then ja~jb~jab~0:5 and

w2
S~4 y2

azy2
bz2yab

� �
: ð30Þ

Then the power or sample size required to detect specified

values da and db are provided by (20) or (22), respectively.

For example, suppose we desire to test the treatment group

differences in both systolic (A) and diastolic (B) blood pressures,

lower values of each being better. From existing data the

respective SDs are ya~13 mm Hg and yb~7 mm Hg. The

correlation of the two is rab~0:6 which yields

yab~(0:6)(13)(7)~54:6: Assume that we wish to detect a

treatment group difference equal to 0.25 SD for each measure,

so that da~(0:25)(13)~3:25and db~(0:25)(7)~1:75: For equal-

sized groups with no missing observations then ja~jb~jab~0:5

and w2
S~4½132z72z2(54:6)�~1308:8. For a one-sided test at the

0.05 level, the sample size required to provide power of at least 0.9

is provided by

N~
(1:645z1:282)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1308:8
p

3:25z1:75

" #2

~448:52 ð31Þ

or 225 subjects per group (rounded up). From equation (20), with

this sample size the power to detect smaller differences of 0.2 SD

with da~2:6 and db~1:4, then the power using N = 450 is

provided by

Z1{b~

ffiffiffiffiffiffiffiffi
450
p

(2:6z1:4)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1308:8
p {1:645

" #
~0:700 ð32Þ

with power W(0:7)~0:758. Below we also examine the power for

this example using the other tests.
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The Test Using Standardized Means or Z-Scores
When the component measurements have different units or

scales of measurement, then either the test based on the

standardized values or the individual Z-tests is invariant to scale

transformations, and, therefore, preferred. This test may also be

preferred when the component measures have different variances,

even when measured on the same scale.

For the standardized-scores test, from (16),

w2
S,y~

jEazjCað Þ
jEajCa

z
(jEbzjCb)

jEbjCb

z2rab

jEab

jEajEb

z
jCab

jCajCb

� �
: ð33Þ

When there are equal-sized groups with no missing observations

(all fjg~0:5) then w2
S,Y ~8(1zrab). Power and sample size are

then obtained from (23) and (24).

For the above example, with equal sample sizes and no missing

data, then corr(d̂da,d̂db)~corr(Xa,Xb)~rab~0:6. Since the differ-

ence is specified as a fraction of the standard deviation,

da~(0:25)ya and db~(0:25)yb, then da=ya~db=yb~0:25 and

the required sample size is

N~
(1:645z1:282)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8(1z0:6)

p
2(0:25)

" #2

~438:65 ð34Þ

that is slightly less than the N required for the scale-based test.

This indicates that for this example, the test based on standardized

scores would have greater power for a given N.

The same numerical result also is obtained using the Z-based

test since in this case the two tests are equal.

Relative Efficiency Versus Other Tests
It is also instructive to compare the efficiency of the Wei-Lachin

test versus two one-sided tests or an omnibus test. We do so here in

the context of a test for means, and these results apply in general to

other tests as well. Standard methods for the evaluation of the

asymptotic relative (Pitman) efficiency (ARE) of two tests under a

local alternative would not account for the necessary adjustment to

the significance level for two tests. However, the ARE can be

interpreted as the ratio of sample sizes needed to provide the same

level of power for a specific alternative. This ratio of sample sizes

can be derived directly from (22) relative to the like expression for

either two separate tests or the omnibus test.

Pairwise Tests. Consider the power of the test for means

with equal group sample sizes and residual variance y2
j for the jth

outcome where each is measured on the same scale so that the

original scale-based test is appropriate. For a given alternative

(daw0,dbw0). For two tests with equal-sized groups, each being

of size N/2, with no missing data (jia~jib~jiab~1=2), the

variance of the difference for the jth outcome is

V (d̂dj)~4y2
j =N ð35Þ

assuming homoscedasticity. Then the equivalent expression for the

total sample size required based on the separate tests is provided

by

NP~max
(Z1{a=2zZ1{b)2ya

da

� �2

,
(Z1{a=2zZ1{b)2yb

db

� �2
( )

ð36Þ

using the Bonferroni correction for 2 one-sided tests. To simplify,

assume that the differences of interest are a common fraction v of

the standard deviations, i.e. da~nya and db~nyb in which case

NP~
2(Z1{a=2zZ1{b)

n

� �2

ð37Þ

Let NS denote the total sample size required for the Wei-Lachin

test as obtained from (22) with the value w2
S that is obtained from

(30) to yield

NS~
(Z1{azZ1{b)

dazdb

� �2

4 y2
azy2

bz2yab

� �
~

(Z1{azZ1{b)

n yazyb½ �

� �2

4 y2
azy2

bz2yab

� �
:

ð38Þ

Thus, the ratio of sample sizes needed with the two-pairwise

one-sided tests versus the Wei-Lachin test is

NP

NS

~
2 Z1{a=2zZ1{b

	 

Z1{azZ1{b

� �2
n yazyb½ �ð Þ2

4n2 y2
azy2

bz2yab

� �" #

~
Z1{a=2zZ1{b

	 

Z1{azZ1{b

� �2
y2

azy2
bz2yayb

y2
azy2

bz2yab

" # ð39Þ

Since Z1{a=2wZ1{a and yayb§yab, then NPwNS .

For example, consider a one-sided test at the 0.05 level (0.025

adjusted for two tests) with 90% power to detect an improvement

E versus C at any level v. Assume a correlation among the A and B

measures of 0.5 and variances y2
a~y2

b = 1. Then the ratio of

sample sizes is

NP

NS

~
1:96z1:282

1:645z1:282

� �2
4

2z2(0:5)

� �
~1:64 ð40Þ

which indicates that two separate tests requires a 64% greater

sample size than does the Wei-Lachin test for this a and b, or that

the Wei-Lachin test is 39% more efficient. These results apply

approximately to other tests such as the test for proportions or the

test of life-times.

The Omnibus MANOVA Test. Similarly, the omnibus

multivariate analysis of variance (MANOVA) T2-like test of H0

versus the general alternative H1O in (7) is provided by

X 2~(d̂da d̂db)ŜS{1(d̂da d̂db)’ that is asymptotically distributed as chi-

square on 2 df. The corresponding non-centrality parameter is

h2~(dadb)S{1(dadb)’

~(nyanyb)S{1(nyanyb)’
ð41Þ

where the inverse covariance matrix is

S{1~
N

4 y2
ay2

b{y2
ab

	 
 y2
b

{yab

{yab

y2
a

" #
: ð42Þ
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Thus

h2~
NO

2

n2 y2
ay2

b{yaybyab

	 

y2

ay2
b{y2

ab

" #
~NOw2: ð43Þ

The non-centrality parameter for a test at level a on K df that

provides power 12b, designated as h2(a,b,K), is readily obtained,

such as from the SAS function CNONCT. Then the required

sample size is provided by

NO~h2(a,b,df )=w2 ð44Þ

For the above example, h2(0:05,0:10,2)~12:654 and

NO~
12:654ð Þ 2ð Þ(y2

ay2
b{y2

ab)

n2 y2
ay2

b{yaybyab

	 
 : ð45Þ

Then, for the above example, the inverse efficiency relative to

the Wei-Lachin test is provided by the ratio of NO to NS in (38) to

yield

NO

NS

~

12:654ð Þ 2ð Þ(1{0:25)

1{0:5ð Þ
1:645z1:282

2

� �2

(12)

~1:477 ð46Þ

and the Wei-Lachin test is 32% more efficient for these operating

characteristics. If the computation is conducted for a two-sized

Wei-Lachin test, then NO/NS = 1.204 and the Wei-Lachin test is

17% more efficient.

Power of Tests for Multiple Proportions, and
Mixtures of Proportions and Means

Test for Multiple Proportions
Now consider a large sample test for a difference between

groups in the probabilities (pij) of two Bernoulli variables Xa and

Xb where the corresponding sample proportions are distributed as

pij*N(pij ,y
2
ij=nij) with Bernoulli variance y2

ij~pij(1{pij) for the

jth outcome within the ith group and sample sizes nij~Njij ,

i~E,C; j~a,b: The covariance of the Bernoulli variables within

the ith group, Cov(Xia,Xib), is simply

yiab~E(XiaXib){E(Xia)E(Xib)~piab{piapib ð47Þ

where piab is the probability that both variables are positive [7].

Again we assume that a lower probability is better. If not, the (0, 1)

categories should be reversed.

Then d̂da~( pCa{pEa) and d̂db~( pCb{pEb) and D̂D~(d̂da d̂db)’ is

asymptotically distributed as in (3) with expectation D~(da db)’
where dj~(pCj{pEj) and with covariance matrix

S~
s2

a

sab

sab

s2
b

" #
~

y2
Ea

nEa

z
y2

Ca

nCa

yEabnEab

nEanEb

z
yCabnCab

nCanCb

yEabnEab

nEanEb

z
yCabnCab

nCanCb

y2
Eb

nEb

z
y2

Cb

nCb

26664
37775

ð48Þ

that is consistently estimable from the sample quantities [7]. Then

the statistic ZS is constructed as in (5) based on the sample estimate

of the variance s2
S as in (13). Note that in this case, since all

measures are based on Bernoulli variables, there is no advantage

to using the test based on standardized scores. Alternately, the

Z-based test would be constructed as in (19) withdCorrCorr(d̂da,d̂db)~ŝsab=(ŝsaŝsb).

For the assessment of sample size or power the covariance

would be factored as S~V=N with terms (w2
a,w2

b,w2
ab) and where

Corr(d̂da,d̂db)~wab=(wawb).

For example, assume that the outcomes in the control group are

expected to have probabilities pCa~pCb~0:4 with joint proba-

bility pCab~0:2 and that the respective probabilities in the

experimental group are pEa~pEb~0:3 with joint probability

pEab~0:15. Then y2
Ea~y2

Eb~(0:3)(0:7), y2
Ca~y2

Cb~(0:4)(0:6),

yEab~(0:15{0:32), and yCab~(0:20{0:42). With equal sized

groups and no missing observations, then jia~jib~jiab~1=2
(i~E,C) and

w2
s ~

4 (0:3)(0:7)z(0:4)(0:6)z(0:15{0:32)z(0:20{0:42)
� �

~2:20
ð49Þ

with the resulting computation

N~
(1:645z1:282)

ffiffiffiffiffiffiffi
2:2
p

2(0:1)

" #2

~471:2: ð50Þ

The correlation of the estimates is

Corr(d̂da,d̂db)~

ffiffiffi
2
p

yEabzyCabð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

Eazy2
Ca

q
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

Ebzy2
Cb

q
~

ffiffiffi
2
p

(0:15{0:32)z(0:20{0:42)
� �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(0:3)(0:7)z(0:4)(0:6)

p ~0:10541:

ð51Þ

Then the test based on Z-test values would require

N~
(1:645z1:282)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z0:10541
p

2
0:1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(0:3)(0:7)z(0:4)(0:6)
p

26664
37775

2

~405:85: ð52Þ

Thus, the Z-based test is again more efficient than the scale-

based test.
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Tests for Means and Proportions
Scale-Based Test. It is also possible to determine the joint

distribution of a test for means of one outcome and a test for

proportions of another. Let XA denote a quantitative measure-

ment with means mia and variance y2
a, assuming homoscedasticity,

and Xib denote a binary variable with probability pib and variance

y2
ib~pib(1{pib) in the ith group (i~E,C). The covariance of the

two in the ith group is provided by

yiab~Cov(Xia,Xib)~E(XiaXib){E(Xia)E(Xib)

~pib(mia(1){mia)
ð53Þ

where mia(1)~E(XiaDXib~1) is the mean of the quantitative

variable Xia among those where the binary variable Xib~1. Then

d̂da~( �XXCa{ �XXEa) with variance s2
a~y2

a

1

nEa

z
1

nCa

� �
, assuming

homoscedasticity, and d̂db~( pCb{pEb) with variance

s2
b~y2

Eb=nEbzy2
Cb=nCb. The covariance is

sab~Cov(d̂da d̂db)~Cov( �XX Ea,pEa)zCov( �XX Ca,pCb)

~
Cov(XEa,XEb)nEab

nEanEb

z
Cov(XCa,XCb)nCab

nCanCb

~
yEabnEab

nEanEb

z
yCabnCab

nCanCb

:

ð54Þ

To conduct the test these variances and covariances can be

estimated consistently from the corresponding sample estimates.

Sample size and power can then be evaluated as above.

For example, assume that we wish to test the difference between

groups in the mean level of LDL and the prevalence of

hypertension. Assume a SD ya~20 in both groups and that the

difference of interest is da~5 that corresponds to a 0.25 SD

difference. While it is not necessary to specify the actual mean

values within each group to compute da, it is necessary to compute

the covariance. Within each group assume that the overall mean

values are mEa~170 and mCa~175 (corresponding to da~5), and

a greater treatment effect among those who are hypertensive with

mean values mEa(1)~175 and mCa(1)~185. Assume that the

probabilities of being hypertensive are pEb~0:60 and

pCb~0:70, yielding db~0:1. Then the variance components are

y2
Eb~(0:6)(0:4)~0:24, y2

Cb~(0:7)(0:3)~0:21,

yEab~(0:6)(175{170)~3:0, and yCab~(0:7)(185{175)~7.

Assuming equal sized groups with no missing data, then

D̂D~(d̂da d̂db)’ is asymptotically normally distributed with covariance

matrix S~V=N and

V~
w2

a

wab

wab

w2
b

" #
~

4y2
a

2(yEabzyCab)

2(yEabzyCab)

2(y2
Ebzy2

Cb)

" #

~
4(20)2

2(3z7)

2(3z7)

2 0:24z0:21½ �

" #
~

1600

20

20

0:9

" # ð55Þ

and s2
S~1600:9z2(20)~1640:9. Thus, the required sample size

for a one-sided test at the 0.05 level and 90% power is provided by

N~
(1:645z1:282)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1640:9
p

5:1

" #2

~540:5: ð56Þ

Z-Based Test. Alternately, since the scale-based test is not

invariant under transformations, it would be more appropriate to

employ a combination of the Z-tests. In this case,

da

wa

~
da

ya

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jEa

z
1

jCa

r ;

db

wb

~
dbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2
Eb

jEb

z
y2

Cb

jCb

s ~
pCb{pEbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pEb(1{pEb)

jEb

z
pCb(1{pCb)

jCb

r

Cov(Za,Zb)~Corr(bdda
bddb)~

wab

wawb

~

yEabjEab

jEajEb

z
yCabjCab

jCajCb

ya

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jEa

z
1

jCa

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

Eb

jEb

z
y2

Cb

jCb

s ð57Þ

When there are equal sample sizes between groups with no

missing data for either measure then

da

wa

~
da

2ya

;

db

wb

~
pCb{pEbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2

Ebz2y2
Cb

q ~
pCb{pEbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pEb(1{pEb)z2pCb(1{pCb)
p ;

Cov(Za,Zb)~
2(yEabzyCab)

2ya

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(y2

Ebzy2
Cb)

q :

ð58Þ

Then for this example

da

wa

~
5

2(20)
~0:125;

db

wb

~
0:1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 0:24z0:21½ �
p ~0:1054 ð59Þ

Cov(Za,Zb)~
2(3z7)

2(20)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(0:24z0:21)

p ~0:5271

and

N~
(1:645z1:282)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2(0:5271)

p
0:125z0:1054

" #2

~492:9: ð60Þ

Thus, the Z-based test would provide greater power in this case.
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Power of Tests for Multiple Event-Times

Tests for Multiple Event-times
For right censored event time data, a member of the family of

Aalen-Gill tests [16,17], also known as the Gr family of tests of

Harrington and Fleming [18], can be used to test the hypothesis of

equal hazard functions, or survival functions, between two groups.

This family includes the logrank test that is asymptotically fully

efficient under a proportional hazards model and is equivalent to

the score test of the unadjusted group effect in a Cox Proportional

Hazards model. It also includes the Peto-Peto-Prentice modified

Wilcoxon test that is optimal under a survival proportional odds

model. Andersen, Borgan, Gill and Keiding [19] describe a

generalization of the tests for K.2 groups. These tests are

equivalent to the family of weighted Mantel-Haenszel statistics

described by Kalbfleisch and Prentice [20].

Wei and Lachin [2] describe a multivariate rank test for event

times that is a generalization of the above families of tests to the

case of multiple time-to-event outcomes. They also introduced the

one-directional multivariate test described herein, what they

termed the test of stochastic ordering, to assess whether the

treatment group event times differed in a favorable direction for all

of the outcomes. A SAS macro for these computations is available

(see discussion). The computational details will not be provided

herein.

Lakatos [21] presents a general approach to the evaluation of

sample size and power for the Mantel-logrank test that allows for

time varying hazard rates, proportional or non-proportional

hazards, and other design features. When the hazard rates are

assumed constant over time with a constant of proportionality, a

simple exponential model applies in which case the methods of

Rubenstein et al. [22] or Lachin and Foulkes [23] can be applied.

Herein we describe the computation of sample size or power for

the Wei-Lachin test for multiple event-time outcomes under the

exponential model of Lachin and Foulkes that includes a

generalization of the method described by Lachin [15] based on

the difference in the exponential hazard rates. Freedman [24]

showed that the latter expression can also be derived from the

expected value of the logrank chi-square test value under a

proportional hazards model. Lachin and Foulkes [23] also show

that the power of the test based on the difference in the estimated

hazards is virtually identical to that for a test based on the log

hazard ratio.

We assume that there are two or more outcome events where no

one outcome is a competing risk for the other outcomes, such as

the time to development of diabetic retinopathy and time to

developing diabetic nephropathy, neither of which is fatal. Let

Xijk = 1 denote that the kth subject had the jth event in the ith
group at time tijk, and Xijk = 0 denote right censoring at time Uijk

that in turn is the minimum of the loss to follow-up time and the

administrative censoring time for those who remain free of the jth
outcome, i = E, C; j = a, b. Then the total number of subjects with

an event (called events) (Dij) and total time at risk (Tij) for the ith
group and the jth outcome are

Dij~
X

k
Xijk ð61Þ

Tij~
X

k
Xijktijkz(1{Xijk)Uijk

� �
:

Note that the Xijk are non-iid Bernoulli variables with event

probabilities that are a function of the underlying hazard rates for

the event and losses to follow-up and the period of exposure Uijk.

Within each group, for each outcome assume a constant hazard

rate lij that is consistently estimated as l̂lij~Dij=Tij . Let E(Dij)

designate the expected number of events based on the assumed

hazard rate lij , sample size, periods of recruitment and follow-up,

and losses-to follow-up in that group. Asymptotically,

l̂lij*N (lij ,u
2
ij) ð62Þ

where u2
ij~l2

ij=E(Dij) that is consistently estimated as ûu2
ij~l̂l2

ij=Dij .

Then d̂da~(l̂lCa{l̂lEa), d̂db~(l̂lCb{l̂lEb) and, D̂D~(d̂da d̂db)’ is

asymptotically distributed as in (3) with expectations

da~(lCa{lEa) and db~(lCb{lEb) and covariance matrix S

with elements V (d̂da),V (d̂db) and Cov(d̂da d̂db). A test based on D̂D will

have power approximately equal to that of the Wei-Lachin

multivariate one-directional test using the Wei-Lachin bivariate

Aalen-Gill logrank test under proportional hazards. Thus, we

describe the power of the bivariate logrank test based on the test of

the difference in exponential hazards. Then the scale-based test

employs

s2
S~V (d̂da)zV (d̂db){2Cov(d̂da d̂db) ð63Þ

V (d̂dj)~u2
Ejzu2

Cj~
l2

Ej

E(DEj)
z

l2
Cj

E(DCj)

" #

that is consistently estimated using l̂lij and the observed Dij ,

j~a,b.

File S1 shows that the covariance is expressed as

Cov(d̂da d̂db)~
E DEab½ �{E DEabI½ �

E TEa½ �E TEb½ � z
E DCab½ �{E DCabI½ �

E TCa½ �E TCb½ � ð64Þ

where Diab is the number of subjects who experience both the A

and B events and E DiabI½ � is the expected number with both

events under the assumption that the Bernoulli variables Xiak and

Xibk are independent. Each is consistently estimated from the

observed numbers of events and total time at risk. The

computational expression for DiabI is also presented in File S1.

The resulting test as in (5) then is based on the variance estimate

ŝs2
S~

l̂l2
Ea

DEa

z
l̂l2

Ca

DCa

z
l̂l2

Eb

DEb

z
l̂l2

Cb

DCb

{

2
DEab{DEabI

TEaTEb

z
DCab{DCabI

TCaTCb

� � ð65Þ

that is solely a function of the numbers of individual and joint

events, the corresponding event times and the corresponding times

of at risk. Accordingly, the power of the test is a function of the

expected numbers of events and expected time at risk that in turn

are a function of the design parameters and sample size.

Lachin and Foulkes [23] provide the expression for the

probabilities of events fpijg for given hazard rates for events

flijg and losses to follow-up fgijg, recruitment period R with

recruitment shape parameter c and total follow-up Q, and sample

size nij~Njij . Then the expected number of events is obtained as

Wei-Lachin Multivariate One-Sided Test for Multiple Outcomes

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e108784



E(Dij)~Njijpij and likewise the expected period at risk as

E(Tij)~Njijtij . File S1 also provides expressions for E(Diab),

E(DiabI ) and E(Tij). Then s2
S~w2

S=N where

w2
S~w2

azw2
b{2wab~

l2
Ea

jEapEa

z
l2

Ca

jCapCa

z
l2

Eb

jEbpEb

z
l2

Cb

jCbpCb

{2
jEab pEab{pEabI½ �

jEatEajEbtEb

z
jCab pCab{pCabI½ �

jCatCajCbtCb

� �
:

ð66Þ

Power and sample size are then obtained from (20) and (22).

However, to obtain an analytic solution to these equations, a

specific model must be specified for the dependence of the event-

times with a given correlation, such as the Marshall and Olkin [25]

bivariate exponential model. Hougaard [26] provides a review of

such models. Alternately, a simulation model could be imple-

mented using a given bivariate exponential distribution. Herein, a

simpler approach is described using a shared frailty.

Assume that the two event types share a common frailty with

parameter liF . Then in the simulation model, in the ith group,

three random exponential times are generated as

t1*exponential(lia{liF )

t2*exponential(lib{liF )

t3*exponential(liF )

and the correlated exponential event times are then obtained as

tia~min(t1,t3)*exponential(lia)

tib~min(t2,t3)*exponential(lib):

from which the probability piab of both events can be obtained.

For example, consider a Q~5 year study with linear (constant)

recruitment over a R~3 year interval allowing for a loss-to-follow-

up hazard rate of 0.05 per year and with equal size groups. Within

the control group assume that the hazard rates are lCa~0:2=year
and lCb~0:3=year and that the experimental therapy yields risk

reductions of RRa~0:8 and RRb~2=3, or hazard rates of

lEa~0:16=y and lEb~0:2=y so that da~0:04 and db~0:10. To

allow for a correlation of the event times we assume shared frailties

of lEF ~0:08 and lCF~0:1: For a given sample size, the

simulation model (herein with 10,000 replications) provides direct

computation (within a small degree of error) of the expected

quantities (E(Dij), etc.) from which power is computed. By a

simple search it was found that a n of 197 per group provides a

one-sided one-directional test with 90% power.

For this sample size, the expected number of events marginally

are E(DCa)~90:3, E(DCb)~116:9, E(DEa)~76:9, and

E(DEb)~90:4; and the expected patient-years at risk are

E(TCa)~451:6, E(TCb)~389:8, E(TEa)~480:6, and

E(TEb)~451:8. The numbers of subjects with both events with

the shared frailty are E(DCab)~67:4 and E(DEab)~51:6, and

those expected under independence (by chance) are

E(DCabI )~54:8 and E(DEabI )~36:3. These yield s2
a~7:76E–4,

s2
b~12:1E–4, and sab~1:43E–4, that provides

corr(d̂da,d̂db)~0:147 and s2
S~22:7E–4. Substituting into (20),

yields Z1{b~1:292 and power = 0.902.

A similar computation using (25) shows that an n of 197 per

group would provide power = 0.885 using the Z-based test,

indicating that in this setting the Z-based test would have less

power than the original scale based test.

Generalizations
It is also possible to obtain a test based on the combination of

group differences in hazard rates and differences in proportions or

means. As in the preceding sections this requires the derivation of

the covariance of the measures within each treatment group.

Alternately, a multivariate one-directional test can be obtained

using multiple regression models as now described.

Model-Based Analysis of Multiple Outcomes

The preceding sections describe the application of the Wei-

Lachin test to a combination of the group differences in means or

proportions or hazard rates. In each case the covariance of the

group differences, or of the corresponding Z-values, is described.

The test statistic can then be computed using a consistent sample

estimate of the variances and covariance(s), and the expression for

power can be obtained using specified values for these parameters.

In principle it is possible to construct a test for combinations of

other types of outcomes, such as the difference in rates (counts) of

events under a Poisson model, and to derive the equations to assess

the power of the tests. However, it is more convenient to provide

model-based generalizations of this approach.

From basic principles, Pipper, Ritz and Bisgaard [27] describe

the joint distribution of parameter estimates from multiple models,

not necessarily all of the same type. Consider two models for each

of two outcomes, each with Kj parameters and coefficient

estimates ĥhj~(ĥhj1 . . . ĥhjKj
)’. Arbitrarily, assume that the first

parameter estimate ĥhj1 represents the difference between groups

on some scale, no difference represented by a value of zero, and

the remaining Kj estimates represent the intercept (if any) and

other covariate effects. Then U‘j(ĥhj)~ U‘j1(ĥhj) . . . U‘jKj
(ĥhj)

h i’
is

the score vector for the ‘th subject and Ij(ĥhj) is the model based

estimate of the expected information for the jth outcome. Also, let

Uj(ĥhj) denote the Kj|N matrix where the ‘th column is the score

vector U‘j(ĥhj). Then the generalization of the information

sandwich robust estimate of the covariance matrix of the joint

set of estimates ĥh~(ĥh’aĥh’b)’ is provided by

SR(ĥh)~
SR(ĥha) SR(ĥha,ĥhb)

SR(ĥha,ĥhb) SR(ĥhb)

" #
ð67Þ

where

SR(ĥhj)~Ij(ĥhj) U ({1
j ĥhj)U (j ĥhj)’Ij(ĥhj) ,{1 j~a,b ð68Þ

SR(ĥha,ĥhb)~Ia(ĥha) U ({1
a ĥha)U (b ĥhb)’Ib(ĥhb){1:

The estimated variances of the group coefficients in the two

models is then provided by the elements ŝs2
a~SR(ĥha)1,1 and
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ŝs2
b~SR(ĥhb)1,1, and the covariance by ŝsab~SR(ĥha,ĥhb)1,1. The

scale-based test is then provided by (5) with (ĥha1,ĥhb1) substituted

for (d̂da,d̂db). Alternately, Z-tests of the group effect in the two

models are then provided by Zj~ĥhj1=sj , j~a,b, and the

correlation of these tests by

Cov(Za,Zb)~Corr(ĥha1,ĥhb1)~ŝsab=(ŝsaŝsb). This provides the Z-

based test as in (19).

Pipper et al. also describe the application of the joint models

where data for a subject is missing for one of the component

models (but not both). Under the assumption of missing

completely at random, then the score vector elements for that

subject are set to zero in the corresponding score matrix U.

It would be difficult to evaluate the sample size and power of

such a model-based test. However, simple computations such as

those herein could be applied, e.g. the power of a test for a

difference in means and proportions when the actual analysis will

employ a linear regression model and a logistic model.

Pipper et al. originally provided an R package multmod to fit

multiple models and to compute the covariances of the coefficients

in the models. That has since been replaced by the R package

multcomp.

Example – The Diabetes Prevention Program

The Diabetes Prevention Program compared the risk of onset of

type 2 diabetes and deterioration of metabolic function among

participants randomly assigned to an intensive lifestyle interven-

tion (ILS) versus treatment with the glucose lowering drug

metformin and versus a placebo control with no lifestyle

intervention [28]. The study showed that intensive lifestyle

provided a 58% reduction in diabetes risk versus placebo and

39% versus metformin, and that metformin produced a 31%

reduction versus placebo. The study also evaluated the differences

among treatments in the prevalence of developing the metabolic
syndrome, a metabolic state that is linked not only with risk of onset

of diabetes but also the risk of developing cardiovascular disease.

The prevalence of the metabolic syndrome is characterized by 3 or

more of the following 5 criteria: abdominal obesity defined as a

waist circumference .102 cm among men or .88 cm among

women, serum triglycerides (a bad cholesterol) $150 mg/dL,

HDL (a good cholesterol) ,40 mg/dL among men or ,50 mg/

dL among women, systolic/diastolic blood pressure $130/85 mm

Hg, and fasting glucose $110 mg/dL, the latter met by many of

the study subjects. [29]

Of the 3234 randomized, 1388 (43%) already met the metabolic

syndrome criteria. Among the remainder who were evaluated at 3

years of follow-up (i.e., free of the syndrome on entry), 22% (363 of

1673) had the syndrome present. [30] Herein we compare the

prevalence of the metabolic syndrome and its components at 3

years of follow-up among those in the lifestyle versus metformin

treated groups.

The classification of the metabolic syndrome is a composite

outcome, i.e. a single binary trait to designate that the criteria were

met. An alternative would be to construct an analysis of the 5

binary traits using the one-directional multivariate test described

herein.

For two of the traits (waist circumference and HDL) there are

separate criteria for men and women, and for hypertension both

systolic and diastolic blood pressure are employed, whereas for the

other two traits there is a single cutpoint for the corresponding

quantitative measure. Thus an alternate analysis would be to used

these three composite binary traits in conjunction with an analysis

of the other two quantitative variables (triglycerides and glucose).

Alternately, rather than use any cutpoints to construct derived

binary variables, an analysis could compare the groups with

respect to the six quantitative traits (including systolic and diastolic

blood pressure) simultaneously.

Table 1 presents a comparison of the lifestyle versus metformin

groups for each of the binary outcomes and each of the

corresponding quantitative outcomes. The overall prevalence of

the metabolic syndrome using the composite binary outcome does

not differ significantly between groups, although the prevalence is

about 2% lower in the lifestyle group.

For all variables other than HDL, higher values are worse, so

that a positive difference between metformin minus lifestyle

indicates a benefit for lifestyle. In order for the same to apply to

HDL, the analysis employed the negative values of HDL.

All p-values are one-sided. Some of the one-sided p-values are

.0.5 indicating a negative Z-value favoring metformin. However,

most of these differences are close to zero. For no measure is there

evidence that intensive lifestyle is worse than metformin, and all

significant differences favor the lifestyle group. Thus, these data

are consistent with the alternative hypothesis that lifestyle has a

beneficial effect on some of the outcomes, and no adverse effect for

any.

Table 2 presents the correlations among the measurements.

The modest to low correlations suggest that a multivariate test will

provide greater power than individual tests, especially when the

latter are adjusted for multiple tests.

Table 3 then presents the Wei-Lachin scale-based and Z-based

one-directional multivariate test Z and one-sided p-values for three

different analyses of these data. As would be expected, the analysis

of all six quantitative traits is more powerful or sensitive than the

analyses involving binary traits, with p-values ,0.001 using either

the scale or Z-based tests. The analysis of the 5 binary indicator

variables produces less significant results, and the scale-based test

for these data proves to be more powerful (larger Z-value) than the

Z-based test, although both are significant. An alternative would

be to conduct an analysis of the three binary traits defined from

multiple criteria (waist, HDL, hypertension) and the other two

quantitative traits (triglycerides and glucose). This yields results

intermediate to those of the analysis of all quantitative and all

binary traits.

Regardless of which of these options might have been chosen as

the basis for the analysis, all would have provided a statistically

significant result whereas the analysis of the composite metabolic

syndrome outcome failed to demonstrate a beneficial effect of

lifestyle versus metformin (Table 1, p = 0.22).

Discussion

A number of multivariate one-directional or one-sided tests

have been described. Virtually all were developed to apply to a

multivariate test of the difference in means between two groups for

a multivariate outcome, such as repeated measures. These are also

described for the case of two measures with group differences d̂da

and d̂db as described above.

For a test based on multivariate normal observations, such as K
repeated measures, Kudo [31] described the multivariate one-

sided likelihood ratio test (LRT ) of the K-variate generalization of

the ordered hypotheses in (2) assuming that the covariance matrix

S is known, and Pearlman [32] described the LRT when the

estimated covariance matrix is employed. For the case of the two

statistics herein, Pearlman’s LRT is based on the statistic

SLR~min½d̂da _ 0), (d̂db _ 0)�~max½0, min(d̂da,d̂db)� ð69Þ
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where ‘‘_’’ designates the maximum of the two quantities. Thus, if

either d̂d is negative the resulting test statistic quantity is zero.

However, the distribution of SLR is computationally difficult and

the test is not convenient for practical use.

Tang, Gnecco and Geller [33] proposed a computationally

simpler approximation to the LRT. Their approximate or ALR
test is not an approximation in the sense, say, of a series expansion,

but rather is an approximation in the sense that the alternative

hypothesis parameter space is an approximation of that of the

LRT. Their statistic is of the form

SALR~(~ZZa _ 0)z(~ZZb _ 0)� ð70Þ

where ~ZZa and ~ZZb are uncorrelated standardized Z-statistics

obtained as linear transformations of the D̂D vector. Under the

assumption that the covariance matrix is known, then
~Z~(~ZZa

~ZZb)’~A’D̂D where A is a square matrix such that

A’A~S{1 and A’SA~I, such as is obtained from a Choleski

decomposition. The distribution of this statistic is a simplified Chi-

bar-squared distribution [34], though still requiring some compu-

tation to obtain a p-value. However, when an estimate of the

covariance matrix is employed to provide the A transformation

matrix, various authors have shown that the test can be serverely

liberal, i.e. has an inflated type I error probability. In this case,

Tamhane and Logan [35] described an accurate approximation to

the distribution of the resulting test using a mixture of F-

distributions, that also requires some computation to determine

levels of significance.

However, this test has the unsavory feature that if either d̂d value

is negative, regardless how greatly so, the value is set to zero in the

computation of the test statistic. Thus, for example if ~ZZa~{1000

and ~ZZb~10, then SALR~10, and depending on the estimated

covariance values, could reject H0S in favor of H1S, even though it

is clear that H1S does not apply. In a recent overview, Tamhane

and Logan [36] have suggested that ‘‘If several endpoints show

moderate negative differences or even if a few show very large

negative differences, then these tests should not be used because

the a priori assumption of positive treatment effects in all

endpoints is questionable.’’ However, to apply this recommenda-

tion in practice violates the principle that the test statistic for a

study be specified a priori. In effect, the recommended practice

could be viewed as a two-stage inference process - first determine if

the differences are positive, and if so conduct the test. This would

clearly inflate the type I error probability.

Other tests have been proposed that are based in part on

Hotelling’s T2 statistic that is equivalent to the expression in (8)

and is distributed as T2 on K df under the assumption of

multivariate normality of the observations. Under this assumption,

T2 provides an optimal test of the null hypothesis against the global

alternative presented in (7). Follman [37] describes a test of H0

versus H1+: (dazdb)w0 that is not the same as H1S above. His

X 2
z test rejects H0 in favor of H1+ if T2 is significant at level 2a and

(d̂dazd̂db)w0. This test also could lead to rejection of H0 when

either the true da or db is a large negative value and the other an

even larger positive value.

Table 1. Differences between the DPP intensive lifestyle (ILS, n = 571) versus metformin (MET, n = 557) treated patients at three
years of follow-up with respect to quantitative trait components of the metabolic syndrome, and binary indicators of abnormal
levels, and the overall incidence of the metabolic syndrome among those free of the syndrome on entry.

Mean (SE) %

Characteristic ILS MET p ILS MET p

Waist (cm) 97 (0.61) 99 (0.60) 0.0030 54.6 63.4 0.0015

Triglycerides (mg/dl) 115 (2.5) 125 (2.9) 0.0017 19.3 25.3 0.0074

HDL (mg/dl) 51.3 (0.53) 50.7 (0.53) 0.10 36.6 37.9 0.33

BP hypertension 9.5 9.3 0.53

Systolic (mm Hg) 120 (0.64) 122 (0.60) 0.0046

Diastolic (mm Hg) 74 (0.40) 76 (0.37) 0.0001

Glucose (mg/dL) 104 (0.49) 103 (0.53) 0.59 24.1 23.5 0.60

Metabolic Syndrome 18.2 20.1 0.22

Analysis restricted to those free of the metabolic syndrome at entry. One-sided p-values computed from a t-test for quantitative measures and chi-square test for binary
variables.
doi:10.1371/journal.pone.0108784.t001

Table 2. Correlations among the component measurements obtained from the pooled within-groups covariance matrix.

Triglycerides HDL SBP DBP Glucose

Waist (cm) 0.07 0.24 0.13 0.19 0.28

Triglycerides (mg/dl) 0.27 0.03 0.11 0.06

HDL (mg/dl) 20.09 0.04 0.14

Systolic (mm Hg) 0.55 0.08

Diastolic (mm Hg) 0.05

doi:10.1371/journal.pone.0108784.t002
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Bloch, Lai and Tubert-Bitter [38] describe another test

procedure which requires that T2 reach significance at level a
two-sided and that both individual one-sided t-tests of an

indifference hypothesis be significant at level a. The indifference

hypothesis is H0I: (0§daw{e) and (0§dbw{e) for some small

positive value e, and the alternative hypothesis is H1S as in (2)

above so that the one-sided t-test is of the form

tj~
(d̂dj{e)ffiffiffiffiffiffiffiffiffiffiffi

V̂V (d̂dj)

q , j~a,b: ð71Þ

This test was later criticized by Pearlman and Wu [39] who

proposed use of the one-sided LRT of Pearlman [32] in lieu of T2,

among other improvements. The result of either test, however,

depends on the specification of the value e and thus the test may

not be uniformly acceptable.

Other tests have also been applied, although not specifically

designed to test H0 against the one-sided alternative H1S in (2).

O’Brien [13] proposed his ordinary least squares (OLS) and

weigthed least squares (WLS) tests of H0 versus the alternative

hypothesis of a common difference H1A: da~db~d=0. Thus the

alternative hypothesis consists of the line of equality other than the

origin. The one-sided version of this test will also be sensitive to

alternatives where da and db are of similar positive magnitude, but

will not be optimal against the general alternative H1S. Pocock,

Geller and Tsiatis [40] describe the application of these tests to the

analysis of multiple outcomes in clinical trials on different scales.

For a two group comparison of a vector of repeated measures,

under the usual normal errors assumptions O’Brien also suggested

that his statistics were distributed as t. However, the exact small

sample distribution with normal errors is not known and many

authors have shown that the resulting t-statistics have an inflated

type I error probability. For a vector of repeated measures in two

groups, Läuter [41] shows that statistics that employ weighted

averages, as in O’Brien’s WLS test, are indeed distributed as t
provided that the weights are functions of the empirical covariance

matrix estimated from all groups combined rather than the pooled

within-groups covariance matrix estimate as employed by

O’Brien. He proposes a family of such weighted tests that includes

the Wei-Lachin test as a trivial special case. Frick [42] also showed

that O’Brien’s OLS test is biased.

Thus, among the various tests that have been proposed that

could be applied to the assessment of simultaneous differences

between groups for multiple outcomes, the Wei-Lachin test has the

advantages that it is simple to compute; can be applied to mixtures

of outcomes on different scales (e.g. means and proportions); that it

has a large sample normal distribution (or a t-distribution with

normal errors); provides a test with type I error probabilities close

to the nominal levels with generally acceptable sample sizes; is

directed towards the specific multivariate one-directional alterna-

tive of interest, is maximin efficient relative to the possible true but

unknowable optimal test, and readily provides for the computation

of sample size and power.

Rahlfsand Vester [43] describe applications of the Wei-Lachin

test to the analysis of multiple outcomes using the multivariate

Mann-Whitney difference analysis described initially by Thall and

Lachin [11]. The authors are affiliated with idv Data Analysis and

Study Planning that also markets a program (TESTIMATE) that

conducts such Wei-Lachin analyses. Pan [44] also recently

presented a review of various procedures including the Wei-

Lachin test (called the SUM test therein) and some of the above

referenced one-directional procedures and showed by simulation

that the Wei-Lachin test had good power when the outcomes

tended to jointly show beneficial effects.

Programs for computations herein are available from www.bsc.

gwu.edu. These include the coefficient vector L for use in (10)

when Frick’s condition does not apply, the simulation event time

model, and the Wei-Lachin multivariate rank test.
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