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Abstract

The ability of high-risk neuroblastoma to survive unfavorable growth conditions and multimodal therapy has produced an
elusive childhood cancer with remarkably poor prognosis. A novel phenomenon enabling neuroblastoma to survive
selection pressure is its capacity for reversible adaptive plasticity. This plasticity allows cells to transition between highly
proliferative anchorage dependent (AD) and slow growing, anoikis-resistant anchorage independent (AI) phenotypes. Both
phenotypes are present in established mouse and human tumors. The differential gene expression profile of the two cellular
phenotypes in the mouse Neuro2a cell line delineated pathways of proliferation in AD cells or tyrosine kinase activation/
apoptosis inhibition in AI cells. A 20 fold overexpression of inhibitor of differentiation 2 (Id2) was identified in AD cells while
up-regulation of genes involved in anoikis resistance like PI3K/Akt, Erk, Bcl2 and integrins was observed in AI cells. Similarly,
differential expression of Id2 and other genes of interest were also observed in the AD and AI phenotypes of human
neuroblastoma cell lines, SK-N-SH and IMR-32; as well as in primary human tumor specimens. Forced down-regulation of Id2
in AD cells or overexpression in AI cells induced the cells to gain characteristics of the other phenotype. Id2 binds both TGFb
and Smad2/3 and appears critical for maintaining the proliferative phenotype at least partially through negative regulation
of the TGFb/Smad pathway. Simultaneously targeting the differential molecular pathways governing reversible adaptive
plasticity resulted in 50% cure of microscopic disease and delayed tumor growth in established mouse neuroblastoma
tumors. We present a mechanism that accounts for reversible adaptive plasticity and a molecular basis for combined
targeted therapies in neuroblastoma.
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Introduction

Neuroblastoma is a pediatric solid tumor originating from

neural crest progenitors. This disease displays considerable clinical

variability, reflected in patient outcomes that range from

spontaneous regression to lethal disease [1,2,3]. Moreover,

neuroblastoma exhibits a wide range of differentiated phenotypes,

from undifferentiated tumors to tumors containing a neural crest-

derived differentiated cell state [4]. Heterogeneity within cancer

cell populations is common, in which many tumors contain

phenotypically and functionally different cancer cell populations

[5,6,7]. Tumor heterogeneity can arise through multiple mecha-

nisms including genetic/epigenetic changes [8,9], microenviron-

mental pressure [10,11], anoikis resistance [12,13,14,15] and

cancer stem cell populations [16,17,18].

Tumor cell adaptation is an important phenomenon as it could

enable tumors to evade immune surveillance, survive unfavorable

conditions or escape radio- or chemotherapy. We have recently

described a novel form of adaptive cell transformation, termed

reversible adaptive plasticity and demonstrated that neuroblasto-

ma cells are plastic, dynamic and optimize their ability to survive

by switching their phenotype [19]. We identified two defined

neuroblastoma phenotypes with anchorage dependent (AD) and

anchorage independent (AI) growth patterns in mouse and human

cell lines under distinct culture conditions [19]. Since neuroblas-

toma tumor cells arise from embryonic neural crest cells, the AI

cells are grown as spheroids in neural stem cell serum free culture

conditions while the AD counterparts proliferate rapidly and

attach to the plate in regular serum rich media [19]. The

importance of this finding translates to tumor growth as both

phenotypes are capable of reversible transition and specific

molecular markers enabled us to observe both cell types in

established mouse and human neuroblastoma tumors. We have

also identified this phenomenon in multiple other tumor types

(unpublished observations) and indeed, other human cancers

frequently display substantial intra-tumor heterogeneity in cellular

morphology and gene expression [5].

Resistance to anoikis is another molecular mechanism that

could afford tumors aggressive, chemo-resistant properties. Anoikis

is the induction of apoptosis induced by loss of cell adhesion.

Overcoming anoikis and adapting an anchorage independent state

is a crucial step in malignant transformation and metastasis,

making anoikis resistance a natural pre-requisite for aggressive

growth of cancer [14]. Tumor cells have developed a variety of
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strategies to avoid anoikis, by altering integrin expression in both

squamous carcinoma [20] and melanoma cells [21] and by

activation of the integrin/FAK/PI3K pathway in murine lung

carcinoma cells [22]. Resistance to anoikis occasionally is

mediated by oxidative stress, in which reactive oxygen species

activate the Src tyrosine kinase that in turn activates the pro-

survival pathways contributing to survival [23]. Furthermore,

aberrant activation of Src and the proto-oncogenes Ras/Raf are

reported to confer resistance to anoikis through PI3K/Akt

signaling in various cancers [24,25,26]. Normally, cells grown in

vitro under conditions of loss of cell-matrix anchorage and serum

starvation undergo anoikis. However, in our recent study we

observed that the majority of Neuro2a cells growing under these

conditions overcame apoptosis and survived as the AI phenotype

[19]. Therefore, we reasoned that addition of growth factors in the

culture medium may have activated growth factor receptors and

other anti-apoptotic and survival pathways contributing to anoikis

resistance of surviving AI cells. Since it is now widely accepted that

tumor cells optimize their ability to survive anoikis by over-

activation of survival/proliferation cascades, we assessed these

pathways in the AI phenotypes of the neuroblastoma cells.

In an effort to investigate the mechanism(s) driving reversible

phenotypic transition in neuroblastoma, the gene expression profile of

the AD and AI phenotypes of a mouse neuroblastoma cell line was

studied. Gene array analysis of Neuro2a cells revealed remarkable

differences between the two phenotypes in vitro and elucidated the

molecular patterns and pathways associated with each phenotype. In

particular, Id2 was 20 fold overexpressed in AD cells compared to AI

cells. In addition, a wide array of genes governing anoikis resistance

was overexpressed in the AI cells. Id2 was also found to be expressed

in the AD phenotype of human cell lines as well as in primary human

tumor specimens and many of the other survival/proliferation genes

of interest were also differentially expressed in human neuroblastoma

AD and AI cell phenotypes. In view of Id2’s function as an effector of

n-myc, its role in cell proliferation and its remarkably high differential

expression in cell phenotypes, we hypothesized that Id2 plays a

critical role in maintaining the AD phenotype. Either transient or

stable knock-down of Id2 in AD cells and forced overexpression in AI

cells resulted in the cells adapting characteristics of the other

phenotype and confirmed the key role of Id2 in reversible adaptive

plasticity of neuroblastoma cells. Furthermore, our results indicate

that Id2 functions at least partially through negative regulation of the

TGFb/Smad pathway as Id2 binds both TGFb and Smad2/3 and

suppression of Id2 in AD cells activated Smad signaling and

phenotypic transition to an AI-like state. Finally, tumor growth in a

mouse neuroblastoma model was remarkably suppressed by thera-

peutically targeting the molecular pathways governing reversible

adaptive plasticity.

Materials and Methods

Animals
Female A/J mice (6 weeks old) were purchased from Jackson

Laboratory (Bar Harbor, ME). The animals were acclimated for

4–5 days prior to tumor challenge. All procedures involving

animals were approved by the Institutional Animal Care and Use

Committee of Children’s National Medical Center (CNMC),

Washington DC.

Human tumor specimens
De-identified human neuroblastoma samples were obtained

from the Pathology department of CNMC. Written informed

consents were obtained from the parents or guardians of the

patients in accordance with the Declaration of Helsinki. All

procedures involving the use of human tumor specimens were

approved by the Institutional Review Board of CNMC.

Cell lines
Neuro2a is the murine neuroblastoma cell line derived from AJ

mice. IMR-32 and SK-N-SH are human cell lines derived from

MYCN amplified and MYCN non-amplified neuroblastoma

tumors respectively. All cell lines were purchased from ATCC

(Manassas, VA) and cultured as previously described [19]. Briefly,

AD cells were grown in DMEM (Gibco, Carlsbad, CA) containing

10% fetal bovine serum (FBS, Gibco), 0.5% penicillin/streptomy-

cin (Sigma, St. Louis, MO) and 10% L-glutamine (Sigma).

Anchorage independent tumorspheres (AI) from the Neuro2a cells

were grown in NeuroCult complete media consisting of NeuroCult

Neural Stem Cell (NSC) Basal medium, 1/10 NeuroCult NSC

Proliferation supplements, 20 ng/ml EGF, 10 ng/ml bFGF and

2 mg/ml Heparin. NeuroCult media, supplements and growth

factors were all purchased from Stem Cell Technologies

(Vancouver, BC, Canada).

Affymetrix gene array
RNA was extracted from the harvested AD and AI Neuro2a

cells using the RNeasy kit (Qiagen, Frederick, MD) and gene array

was performed using Affymetrix ST mouse GeneChips. Four

replicate hybridizations per phenotype were performed. Partek

Genomic Suite 6.6 and GeneSpring 12.5 were used to analyze

Affymetrix microarray data. Three different methods of data

normalization were used (GCRMA-quantile, RMA16, and

PLIER16) in which the differential gene expression pattern was

compared among the different methods and overlapping genes

were considered for further validation. Two-way hierarchical

clustering analysis (average linkage algorithm and Euclidean

distance metric) was performed by using Partek Genomic Suite

6.6. Ingenuity Pathway Analysis was used and power calculations

indicate discrimination of 1.5-fold expression changes at a= 0.05

with .90% power.

Cell transfection
The AD phenotype of Neuro2a, SK-N-SH and IMR-32 cells

was transfected with either mouse or human specific Id2-siRNA

(Santa Cruz Biotechnology, Santa Cruz, CA) to down regulate

Id2. Both the siRNAs are a pool of 3 target-specific 19–25

nucleotide siRNAs. In a separate assay the Neuro2a AD cells were

transfected with anti-sense oligonucleotides complementary to Id2

(Id2-AS, 59-AGGCTTTCATGCTGACCGC-39) (IDT, Iowa

City, IA) to down regulate Id2. Control-siRNA or mismatched

oligonucleotide (Id2-msm, 59-GCGAGTTGTCGCACGGTCT-

39) was used as control [27]. To overexpress Id2, the AI phenotype

of Neuro2a cells was transiently transfected with Id2-IRES-GFP

plasmid (GenScript, Piscataway, NJ). IRES-GFP was used as

control plasmid. The siRNA (Id2 or control), oligos (AS or msm)

or the plasmids were mixed with Lipofectamine 2000 (Invitrogen,

Grand Island, NY) and added to the cells for 8 hours. Following

transfection, the cells were harvested after 24 hours and analyzed

for proliferation, cell cycle, apoptosis and Western blotting.

Stable cell transfection
The AD phenotype of Neuro2a cells were transduced with Id2-

shRNA lentiviral particles (Santa Cruz Biotechnology) for stable

knockdown of Id2. The stable clones expressing the Id2-shRNA were

selected using Puromycin according to the manufacturer’s instruc-

tions. Scrambled shRNA lentiviral particles were used as control. The

transduced Id2 knock down cells were plated on NeuroCult complete

Mechanism of Adaptive Plasticity in Neuroblastoma
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media (AI conditioning) and monitored for sphere forming potential

to examine their propensity for phenotypic transition.

Cell proliferation assay
5-bromodeoxyuridine (BrdU, 10 mM) was added to the cell

culture medium two hours prior to cell harvest. The incorporated

BrdU was stained with BrdU-APC antibody using the BrdU Flow

kit (BD Biosciences, San Jose, CA) according to the manufacturer’s

protocol and measured by flow cytometry using FACSCalibur (BD

Biosciences). Analysis was done by FlowJo software (Tree Star,

Inc., Ashland, OR).

Figure 1. Gene expression profiling of Neuro2a cells. (A) Affymetrix microarray was performed with mRNA extracted from Neuro2a anchorage
dependent (AD) and anchorage independent (AI) cells. 1180 differentially expressed genes (5% FDR, $1.5-fold change) were identified (see Table S1).
In two-way hierarchical clustering analysis (clustering diagram), highly expressed genes were shown in red and weakly expressed genes in blue in AD
and AI cell phenotypes (n = 4). (B) A representative Western blot analysis performed with protein extracted from Neuro2a AD and AI cells showed
overexpression of n-myc and Id2 in the AD cells which correlated with the gene array results. (C) Representative Western blot analysis performed with
protein extracted from Neuro2a AD and AI cells and densitometric band analysis revealed overexpression and activation of proteins involved in
anoikis resistance in the AI phenotypes thereby validating the gene array profiling data. These include integrins, the anti-apoptotic protein Bcl2 and
Akt, FAK/Src and Erk signaling molecules. The band intensity of the proteins was normalized to the intensity of GAPDH with the exception of
phosphorylated proteins that were normalized to their total proteins. Data points represent mean 6 S.D. (n = 4)
doi:10.1371/journal.pone.0083521.g001

Mechanism of Adaptive Plasticity in Neuroblastoma
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Cell cycle analysis
The AD and AI cells were harvested from culture medium,

washed in cold phosphate buffered saline (PBS) and fixed in 70%

ethanol at –20uC for 2 hours. Cells were centrifuged, washed with

cold PBS and resuspended in propidium iodide mix (40 mg/ml PI

and 0.1 mg/ml RNase in PBS). After 30 minutes incubation at

37uC, cells were acquired in FACSCalibur and analysis was done

by FlowJo software.

Figure 2. Differential protein profile in the AD and AI phenotypes of human neuroblastoma cells. (A) A representative Western blot
analysis performed with protein extracted from the AD and AI phenotypes of SK-N-SH and IMR-32 cells showed overexpression of n-myc and Id2 in
the AD phenotype of both the cell lines. AI phenotypes of SK-N-SH cells show overexpression and activation of proteins involved in anoikis resistance
including integrins and Akt, FAK/Src and Erk signaling molecules. For the IMR-32 cells, the phenotypic transition did not affect these pathways to the
same extent. (B) Quantification of protein levels by densitometric band analysis (n = 3). The band intensity of the proteins was normalized to the
intensity of GAPDH with the exception of phosphorylated proteins that were normalized to their total proteins. Data points represent mean 6 S.D.
(n = 3) (C) Immunofluorescence staining reveals the expression of Id2 protein in two human neuroblastoma specimens as well as in mouse tumor
(Id2: green; nucleus: blue). The images were captured using 40x objective. Scale bar: 50 mm.
doi:10.1371/journal.pone.0083521.g002

Mechanism of Adaptive Plasticity in Neuroblastoma
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Figure 3. Id2 down regulation drives Neuro2a AD cells towards the AI phenotype. (A, B) BrdU incorporation assay demonstrated that
transfection of AD cells with Id2-siRNA reduced the rate of proliferation. The apoptotic cells were excluded by gating out the sub-2n cells. (C, D)
AnnexinV staining revealed increased apoptosis in AD cells following transfection with Id2-siRNA. The percent apoptotic cells in the graph represent
the sum of early and late apoptosis. (E, F) Cell cycle analysis showed reduced number of cells entering in S-phase after Id2 inhibition. (G) Western blot

Mechanism of Adaptive Plasticity in Neuroblastoma
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Apoptosis assay
The AD and AI cells were stained with FITC-conjugated

AnnexinV (BD Biosciences) for 20 minutes followed by 7-AAD for

5 minutes. Cells were analyzed immediately for AnnexinV/7-

AAD expression using FACSCalibur. Analysis was done by FlowJo

software.

TGFb inhibition in vitro
The function of the endogenous TGFb pathway in Neuro2a AD

cells after Id2 down regulation was inhibited by TGFb neutral-

izing antibody (1D11, R&D Systems, Minneapolis, MN) or TGFb
type I/II receptor inhibitor (LY2109761, Selleck Chemicals,

Houston, TX) in separate assays. Together with Id2-siRNA,

10 mg/ml of 1D11 or 5 mM LY2109761 was added to the cells.

Twenty-four hours later apoptosis assay was performed and cell

lysates were prepared for Western blot analysis.

In vivo tumor growth and drug treatments
Mice were injected subcutaneously with 16106 Neuro2a cells of

the AD phenotype and divided into 5 groups as follows, Group 1:

treatment with vehicles only, Group 2: treatment with doxorubicin

(Sigma, St. Louis, MO) and metformin (Sigma), Group 3:

treatment with sorafenib (Selleck Chemicals, Houston, TX),

Group 4: treatment with doxorubicin, metformin and sorafenib

and Group 5: treatment with doxorubicin, metformin, sorafenib

and LY2109761. All treatments were started on post-inoculation

day one and continued for three weeks except for Group 5 which

received only two weeks of treatment. Doxorubicin (2.5 mg/Kg,

dissolved in water) was administered twice a week intraperitonealy

(i.p.), metformin (200 mg/L) was given daily in drinking water,

sorafenib (50 mg/Kg, dissolved in oral vehicle consisting of 1%

sodium carboxymethylcellulose, 0.5% sodium lauryl sulfate and

0.05% antifoam) was administered daily by oral gavage and

LY2109761 (50 mg/Kg, dissolved in oral vehicle) was adminis-

tered orally twice daily. Tumor growth was monitored on alternate

days. Weight loss, lethargy and sick mouse postures with ruffled fur

and piloerection were used as indicators of toxicity. The Group 5

treatment strategy was repeated on an established tumor model

where drug treatment was started when the tumor was visible and

measured about 5 mm in diameter.

Immunofluorescence assay
Ten micron frozen sections of mouse and human primary

tumors were stained for Id2 using rabbit anti-Id2 (Santa Cruz

Biotechnology) antibody diluted 1:250 in PBS containing 0.3%

TritonX-100. AlexaFluor 488 conjugated goat anti-rabbit IgG

(1:200, Invitrogen) was used as secondary antibody and DAPI was

used as nuclear stain. To determine the background fluorescence,

only secondary antibody was used. The fluorescent images were

taken on Olympus FV1000 confocal laser scanning microscope

using 40x objective.

Western blot analysis
Cells were lysed in RIPA lysis buffer containing protease

inhibitors (Roche, Indianapolis, IN) and protein concentration on

cell lysates was determined according to manufacturer’s instruc-

tion using BCA Protein Assay Kit (Pierce, Rockford, IL). Twenty

micrograms of proteins were loaded per well for electrophoresis

after which the proteins were transferred to polyvinylidenedi-

fluoride (PVDF) membranes and blocked with 5% milk. The blots

were incubated overnight with rabbit anti-Id2 (1:100), n-myc, p-

Akt, Akt, p-FAK, FAK, p-Erk, Erk, p-Raf, Raf, p-Src, Src, p-

Smad2/3, Smad2/3, integrin a5, integrin b1, integrin b3, Bcl2

and Bax (1:1000; Cell Signaling, Danvers, MA) followed by HRP-

conjugated anti-rabbit secondary antibody (1:2000, Pierce). Blots

were developed by chemiluminescence using the SuperSignal Kit

(Pierce). Rabbit anti-GAPDH (1:5000; Cell Signaling) was used as

a control for protein loading variations. Densitometric analysis was

performed on the western blot bands using NIH Image J software.

Co-immunoprecipitation assay
Neuro2a AD cells were lysed in RIPA lysis buffer containing

protease inhibitors. Following BCA protein analysis, 500 mg of

protein per sample was first pre-cleared with1/10 volume of

protein A/G agarose beads (Santa Cruz Biotechnology) at 4uC for

an hour on an end-over-end rotator. After pelleting the beads by

centrifugation, the supernatants were incubated overnight with

2 mg primary antibody (rabbit anti-Id2 or rabbit anti-Smad2/3) or

control polyclonal rabbit IgG at 4uC on the rotator. Following

overnight incubation, protein A/G agarose beads were added at

1/10 total volume and incubated for 2 hours at 4uC on the

rotator. Beads were then centrifuged, washed twice with RIPA

buffer and resuspended in 20 ml of 1x sample buffer (BioRad,

Hercules, CA). After boiling for 5 minutes, 5 ml of the samples

were loaded per well for electrophoresis and analyzed for Id2,

TGFb (1D11, R&D Systems) and Smad2/3 by Western blotting.

Statistical analysis
Data are presented as mean 6 S.D. The two-tailed Student’s t-

test was used to determine statistical significance between groups

unless otherwise stated. A probability level of p,0.05 was

considered to be statistically significant. Statistical analysis of

microarray data comparing AD and AI cells was performed based

on one-way ANOVA with a 5% False Discovery Rate (FDR)

criterion to correct for multiple testing.

Results

Neuroblastoma phenotypes have distinct gene profiles
that differentiate cell types in vitro

Affymetrix gene array analysis of the mouse Neuro2a cells

revealed remarkable differences between the AD and AI

phenotypes in vitro (Figure 1A). One thousand one hundred and

eighty (1180) genes were differentially expressed and delineated

pathways of proliferation in AD cells or tyrosine kinase activation/

apoptosis inhibition in AI cells (Table S1 and Figure S1). In

particular, inhibitor of differentiation 2 (Id2) was found to be 20

fold higher in AD compared to AI cells (Table S1). Id2 disrupts the

anti-proliferative effects of the retinoblastoma (Rb) family tumor

suppressor proteins thus allowing cell cycle progression [28]. Id2 is

critical for cell proliferation and is the oncogenic effector of N-

MYC in human neuroblastoma [27,29]. Indeed, our gene array

analysis revealed that n-myc gene expression was 3.5 times higher

in the AD cells (Table S1). Using western blot analysis we

analysis validated the decreased expression of Id2 protein after Id2 inhibition in the AD cells. (H) Representative bands from Western blot analysis
revealed over activation of Akt, Raf, Erk and Smad pathways and overexpression of Integrin b1 protein in AD cells after Id2 down regulation indicating
activation of anoikis resistant pathways. Data points represent mean 6 S.D. (n = 4–6). *p,0.04 and **p,0.0001 by Student’s t-test. Control or C: AD
cells; siR or siRNA: AD cells transfected with siRNA against Id2; cR or cRNA: AD cells transfected with nonsense siRNA control; AS: AD cells transfected
with Id2 antisense oligonucleotide; msm: AD cells transfected with mismatched oligonucleotide.
doi:10.1371/journal.pone.0083521.g003
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validated that Id2 and n-myc proteins are both overexpressed in

the AD phenotype of Neuro2a cells (Figure 1B). In addition, a

wide array of genes involved in anoikis resistance including Bcl2,

PI3K/Akt, EGFR, Ras, integrin a1, a3, a5, b1 and b3 were found

to be overexpressed in the AI cells (Table S1).

Typically, cells grown under conditions of loss of cell-matrix

anchorage and serum starvation undergo anoikis (apoptotic cell

death following detachment). In our recent study we reported that

only 35% of Neuro2a cells grown under these conditions as

anchorage independent cells with EGF and bFGF undergo

apoptosis [19]. The addition of growth factors (EGF and bFGF)

in the culture medium may have activated growth factor receptors

and other anti-apoptotic and survival pathways via PI3K, FAK,

and Raf contributing to the anoikis resistance of the surviving AI

cells. The Raf/MEK/Erk and PI3K/Akt signaling cascades

regulate cell growth, tumorigenesis and drug resistance [30].

Since the gene array analysis exhibited increased expression of

Bcl2, integrins, Ras and PI3K we sought to determine the

expression pattern of the proteins of these pathways by a

comprehensive Western blot analysis. We found that integrin b1,

b3 and a5 were overexpressed in AI cells compared to AD cells

(Figure 1C). The ratio of anti-apoptotic Bcl-2 to pro-apoptotic Bax

proteins was also increased in the AI cells. Moreover, we observed

that Akt, FAK/Src, and Erk pathways were all activated in AI cells

as determined by the increased phosphorylated states of these

proteins (Figure 1C). These findings suggest that AI cells evade

anoikis by the activation of several key survival pathways. The

transcriptional and translational profiles of the two phenotypes of

Neuro2a cells closely correlated with their phenotypic character-

istics; specifically, the highly proliferative feature of the AD cells

compared to the less proliferative and anoikis resistant properties

of the AI cells.

We have previously reported that human neuroblastoma cell

lines SK-N-SH and IMR-32 also demonstrated reversible

phenotypic transformation and distinct molecular marker hetero-

geneity of their AD and AI cells [19]. We therefore sought to

determine if the human neuroblastoma cell lines exhibit differen-

tial protein profiles similar to that observed in Neuro2a. We found

that SK-N-SH cells closely resembled Neuro2a as evident from the

over-activation of Akt, FAK/Src and Erk pathways in the AI cells,

whereas the phenotypic transition of IMR-32 cells did not affect

these pathways to the same extent (Figure 2A, B). However, Id2

and n-myc were found to be overexpressed in the AD cells of both

human cell types (Figure 2A, B). Furthermore, immunofluores-

cence staining revealed the expression of Id2 protein in human

and mouse neuroblastoma tumor specimens (Figure 2C). Taken

together, these results suggest that Id2 most likely plays a

significant role in neuroblastoma tumor cell growth.

Id2 is a key regulator of cell proliferation and phenotypic
transition in neuroblastoma cells

Id2 mediates mitogenic signals, inhibits differentiation and plays

a critical role in cancer development and metastasis [31,32,33].

Due to its known function as an effector of n-myc and its

remarkable differential expression in the cell phenotypes, we

reasoned that Id2 could play a key role in reversible adaptive

plasticity in the neuroblastoma cells. We hypothesized that the AI

cells lose their proliferative potential due to a deficit in n-myc and

Id2 expression under conditions in which loss of cell-matrix

anchorage or serum starvation occurs. The mechanism by which

loss of proliferation occurs could be through competitive binding

of Rb. Diminished Id2 enables Rb binding to the transcription

factor E2F, thus blocking progression into the S phase of cell

cycling (free E2F induces S-phase genes) and inhibiting prolifer-

ation [34,35,36,37]. Subsequently the cells either undergo

apoptosis or develop anoikis resistance. To test this hypothesis,

we first determined the effect of Id2 down regulation on

proliferation, apoptosis and cell cycle of the AD phenotype of

Neuro2a, SK-N-SH and IMR-32 cells. After transfecting AD cells

with Id2-siRNA, we demonstrated decreased expression of Id2

protein by western blot analysis (Figure 3G and 4C). BrdU

incorporation revealed a significant decrease in cell proliferation

(Figure 3A,B and 4A) and cell cycle analysis exhibited fewer cells

in the S-phase of the cell cycle (Figure 3E,F) of Id2-suppressed

neuroblastoma cells compared to cells transfected with a control

siRNA. In addition, we found that Id2 inhibition induced

significant apoptosis in the AD phenotype of all the neuroblastoma

cells studied (Figure 3C,D and 4B). Inhibition of Id2 by Id2-

antisense oligonucleotide (Id2-AS) demonstrated similar results of

reduced proliferation, increased cell cycle arrest and increased

apoptosis compared to a mismatched oligonucleotide (Id2-msm)

(Figure S2). Furthermore, western blot analysis revealed increased

activation of the anoikis resistant pathways like Raf/Erk and Akt

with overexpression of integrin b1 after Id2 down regulation in

both mouse and human cell lines (Figure 3H and 4C). An increase

in the activation of Smad pathway was also evident with Id2

inhibition (Figure 3H and 4C). These observations indicate that

inhibition of Id2 in the AD cells shifts the cells towards an AI-like

phenotype with decreased proliferation and up-regulation of

anoikis resistant pathways.

We next sought to assess the effects of forced overexpression of

Id2 on the AI phenotype of Neuro2a cells by transfecting the AI

cells with IRES-Id2-GFP plasmid. The transfection (Figure 5A,C)

led to an increase of endogenous Id2 compared to the empty

IRES-GFP plasmid (Figure 5B). Consistent with Id2 up regulation,

BrdU incorporation showed an increased rate of proliferation

(+40% compared to the empty plasmid, Figure 5D,E) and clearly

down regulated the activation of Erk, Smad and Akt (anoikis

resistant pathways) (Figure 5F).

To determine whether stable knockdown of Id2 on AD cells will

expedite the phenotypic transition, we transduced the Neuro2a

AD cells with Id2-ShRNA lentiviral particles. The transduced cells

were tested for Id2 expression (Figure 6A) and proliferation rate.

Subsequently, the cells were plated on NeuroCult complete media

(AI condition) and monitored for sphere formatting ability. After

only 4 days, the Id2-shRNA transduced cells formed large dense

spheres in comparison to the control or scrambled shRNA

transduced cells which formed small loosely bound spheres (Figure

6B). Furthermore, the Id2 knockdown cells were found to be less

proliferative than the non-transduced or scrambled shRNA

transduced cells (Figure 6C,D). Taken together, these results

Figure 4. Effect of Id2 down regulation on human neuroblastoma cell lines. (A) BrdU incorporation assay demonstrated that transfection of
AD phenotype of SK-N-SH and IMR-32 cells with Id2-siRNA reduced the rate of proliferation. The apoptotic cells were excluded by gating out the sub-
2n cells. (B) AnnexinV staining revealed increased apoptosis in AD phenotype of SK-N-SH and IMR-32 cells following transfection with Id2-siRNA. The
percent apoptotic cells in the graphs represent the sum of early and late apoptosis. (C) Representative bands from Western blot analysis revealed
over activation of Akt, Erk and Smad pathways and overexpression of Integrin b1 protein in both SK-N-SH and IMR-32 cells after Id2 down regulation.
Data points represent mean 6 S.D. (n = 4–6). *p,0.004 by Student’s t-test. Control or C: AD cells; siR or siRNA: AD cells transfected with siRNA against
Id2; cR or cRNA: AD cells transfected with nonsense siRNA control.
doi:10.1371/journal.pone.0083521.g004
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Figure 5. Id2 overexpression increases cell proliferation in Neuro2a AI cells. (A) Expression of green fluorescent protein (GFP) is evident in
AI cells transfected with IRES-GFP or Id2-IRES-GFP plasmid. (B) Id2 protein is expressed in AI cells after Id2-IRES-GFP transfection, whereas Id2 protein
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support the hypothesis that Id2 expression maintains the

proliferative phenotype of AD cells and acts as a negative

regulator of the phenotypic transition from AD cells to AI cells.

Id2 prevents phenotypic transition by binding TGFb/
Smad and inhibits activation of pathways inducing
anoikis resistance

Transforming growth factor b (TGFb) induces epithelial to

mesenchymal transition (EMT) in carcinoma cells and promotes

tumor invasion [38,39,40]. Id2 is known to be a key negative

regulator of TGFb-induced EMT in epithelial cells [31,41]

suggesting that the effect of Id2 on the neuroblastoma phenotypic

switch may be mediated by TGFb. Although gene array analysis

revealed increased mRNA expression of TGFb and Smad2/3 in

AD cells compared to AI cells (Table S1), western blot analysis

showed no activation of the TGFb/Smad2/3 pathway in the AD

cells (Figure 7C). Therefore, we predicted that high expression of

Id2 may inhibit the TGFb function and that suppression of Id2 on

AD cells would increase the TGFb functionality by activation of

Smad2/3 and also Raf/Erk pathways thereby causing the cells to

overcome anoikis and become anchorage independent. Indeed,

western blot analysis revealed activation of Smad2/3, Raf and Erk

following Id2 down regulation (Figure 7C). Treatment of Id2-

suppressed AD cells with 1D11 (TGFb neutralizing antibody) or

LY2109761 (TGFb type I/II receptor inhibitor) induced remark-

able apoptosis (+615% by 1D11 and +553% by LY2109761, see

Figure 7A,B) and blocked the phosphorylation of Smad 2/3

(Figure 7C). Further evidence corroborating the suppressive effect

of Id2 on the TGFb pathway was observed in co-immunoprecip-

itation experiments in which Id2 bound both TGFb and Smad2/3

(Figure 7D) suggesting an inhibitory action similar to that of Id2

on Rb. Taken together, the results show that Id2 functions as a

negative regulator of TGFb/Smad in neuroblastoma cells and

activation of the TGFb pathway is at least partially responsible for

the transition of AD cells to an AI phenotype (Figure 8).

Tumor growth in a mouse neuroblastoma model is
suppressed by multi drug treatment targeting molecular
mechanisms of reversible adaptive plasticity

We have previously reported that irrespective of the phenotype

(AD or AI) originally implanted in mice, neuroblastoma tumors

grown in vivo show phenotypic heterogeneity with molecular

marker signatures of both phenotypes and are indistinguishable in

growth or histologic appearance. Simultaneously targeting both

phenotypes with chemotherapy and growth factor inhibition

slowed tumor growth in mice but promoted emergence of other

variant phenotypes [19]. Since the Raf/Erk pathway is the

convergence point of several other cell survival regulatory

pathways that are found to be activated in AI cells, we proposed

that inhibition of non-receptor tyrosine kinase signaling by the

multi-kinase inhibitor sorafenib [42,43] may represent an attrac-

tive approach to targeting the AI cells in mouse tumors. Similarly,

was absent in AI cells transfected with IRES-GFP. (C) Representative plots showed 77–85% transfection efficiency. (D, E) BrdU incorporation assay
indicating increased rate of proliferation in AI cells after Id2 overexpression. The apoptotic cells were excluded by gating out the sub-2n cells. (F)
Representative bands from Western blot analysis revealed that overexpression of Id2 reduced the activation of Erk, Akt and Smad pathways in AI cells.
Data points represent mean 6 S.D. (n = 4–6). *p,0.04 by Student’s t-test. C: AI cells, Ires: AI cells transfected with IRES-GFP, Id2: AI cells transfected
with Id2-IRES-GFP.
doi:10.1371/journal.pone.0083521.g005

Figure 6. Stable knockdown of Id2 accelerates phenotypic transition. (A) Western blot analysis reveals complete knockdown of Id2 on
Neuro2a AD cells transduced with Id2-shRNA lentiviral particles. (B) After only 4 days in NeuroCult complete media, the Id2 knockdown cells readily
formed dense large spheres while the scrambled-shRNA transduced cells and the non-transduced AD cells formed loose smaller spheres at the same
time point suggesting that Id2 knockdown accelerates the transition from AD to AI phenotype in Neuro2a cells. The images were captured on an
Olympus ckx41 microscope using 10x objective. (C, D) BrdU incorporation assay demonstrated that transduction of Neuro2a AD cells with Id2-shRNA
lentivirus reduced the rate of proliferation. The apoptotic cells were excluded by gating out the sub-2n cells. Data points represent mean 6 S.D.
(n = 4). *p,0.006 by Student’s t-test. nt: nontransduced Neuro2a AD cells; sc: Neuro2a AD cells transduced with scrambled shRNA lentivirus; Id22:
Neuro2a AD cells transduced with Id2 shRNA lentivirus.
doi:10.1371/journal.pone.0083521.g006
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Figure 7. Id2 functions partially through TGFb pathway. (A, B) The TGFb neutralizing antibody (1D11) and its I/II receptor inhibitor
(LY2109761) induced apoptosis in the Id2-inhibited AD cells. Data points represent mean 6 S.D. (n = 3). *p,0.0001 by Student’s t-test. (C)
Representative bands from Western blot analysis revealed decreased Smad2/3 activation in the presence of both TGFb inhibitors with no change in
Akt, Raf, Erk or Bcl2 pathways when compared to the Id2-suppressed cells. (D) Co-immunoprecipitation study shows Id2 binding to both TGFb and
Smad2/3.
doi:10.1371/journal.pone.0083521.g007
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the highly proliferative AD cells were targeted with the chemo-

therapy drug doxorubicin in the presence of metformin [19,44].

We also reasoned that simultaneously targeting both phenotypes

with chemotherapy and sorafenib plus the addition of a TGFb
inhibitor, LY2109761 would enhance the combinatorial effect and

prevent reversible phenotypic adaptation from occurring. To test

this rationale, mice were treated with reagents alone or in

combination. Mice were treated with doxorubicin, metformin and

sorafenib for three weeks starting a day after their tumor

challenge, while mice that were treated with doxorubicin,

metformin, sorafenib and LY2109761 were only treated for two

weeks due to anticipated drug toxicity. In this model of

neuroblastoma, we found that the combination of drugs targeting

both AD and AI phenotypes together had significantly greater

impact on suppressing tumor growth compared to targeting either

phenotype alone (Figure 9A). When the TGFb blocker was added

to the combination to prevent phenotypic transition the effect on

tumor growth was even more remarkable in which 50% of mice

remained tumor free for the duration of the experiment (Figure

9A) and tumor growth was significantly suppressed (Figure 9B).

These observations demonstrate the pre-clinical value of thera-

peutically targeting the molecular pathways governing reversible

adaptive plasticity in neuroblastoma.

Discussion

Neuroblastoma cells undergo reversible adaptive plasticity to

survive unfavorable conditions and escape therapy [19]. To gain

further insight into the mechanism driving this adaptation, we

explored gene expression in the two heterogenous phenotypes of

Neuro2a cells and examined potential target molecules involved in

the phenotypic transition. We found that Id2, acting at least

partially through the negative regulation of the TGFb/Smad

pathway is a key mediator of reversible adaptive plasticity. In both

mouse and human neuroblastoma tumor cells, Id2 maintains the

proliferative phenotype and any alteration in its expression

perhaps due to microenvironmental signals may account for its

phenotypic switching to a more dormant anoikis resistant

phenotype (Figure 8).

Expression of Id proteins can be reactivated in human cancer

and it is proposed that deregulated Id signaling may promote

multiple attributes of malignant behavior [45]. The excessively

high expression of Id2 in anchorage dependent cells, its function as

an effector of n-myc and an oncogenic factor in neuroblastoma

[27] as well as its contribution towards negative regulation of cell

differentiation and positive regulation of cell cycle control

[27,32,46] led us to investigate its role as a mediator of adaptive

plasticity in neuroblastoma. Indeed, down-regulation of Id2

expression in the AD phenotype of neuroblastoma cells not only

decreased proliferation and induced apoptosis but also resulted in

over-activation of anoikis resistant pathways. This altered pheno-

type was similar to the AI cells in which anoikis resistance is

evident. Conversely, overexpression of Id2 in the AI cells

significantly increased their rate of proliferation. Therefore, Id2

appears critical for maintaining the proliferative AD phenotype

while its suppression results in up-regulation of mechanisms

governing transition to the anoikis resistant AI phenotype. These

results identify and establish the distinctive functional role of Id2 in

neuroblastoma tumor cell plasticity (Figure 8).

The effect of TGFb on tissue homeostasis through the inhibition

of Id proteins has been extensively studied in several cell lines

including skin keratinocytes, lung epithelial cells and mammary

epithelial cells [31,47,48] and Id2 is established as a key negative

regulator of TGFb-induced EMT in epithelial cells [31,41].

Although in our model of neuroblastoma tumor cell plasticity, our

previous findings did not detect any expression of markers

indicative of EMT [19] and neuroblastoma is not a tumor of

epithelial origin, it is possible that the phenotypic transition we

described [19] and EMT may represent similar phenomena of

tumor cell adaptation. Our findings demonstrate the critical role

that Id2 plays in binding and negatively regulating TGFb
function. When Id2 is suppressed, the TGFb pathway is activated

Figure 8. A model depicting the role of Id2 in Neuro2a phenotypic transition. We show that the AI cells lose their proliferative potential due
to loss of n-myc and Id2 expression when conditions induce loss of cell-matrix anchorage or serum starvation. The mechanism by which this occurs is
through competitive binding of retinoblastoma (Rb) and TGFb. Diminished Id2 enables Rb binding to E2F, thus blocking progression into the S-phase
of cell cycling (free E2F induces S-phase genes) and inhibiting proliferation. Subsequently the cells either undergo apoptosis or develop resistance to
anoikis. Concurrently, inhibiting Id2 enables TGFb to activate the pathways of anoikis resistance allowing the cells to adapt to unfavorable conditions.
doi:10.1371/journal.pone.0083521.g008
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inducing phenotypic transition to a less proliferative, anoikis

resistant phenotype allowing the tumor cells to survive unfavorable

or stressful conditions (Figure 8).

The Ras/Raf/Erk pathways are conserved signaling pathways

that enable cells to respond to external stresses and stimuli [49],

and changes in the Erk pathway can promote several effects

ranging from apoptosis to exhibiting more malignant behavior

depending on the cell type. In the present study, an increased

activation of these pathways was noted in the AI cells as well as in

AD cells following Id2-suppression. Sorafenib, competitively

inhibits Raf activity resulting in attenuation of the Erk signaling

pathway and is reported to have therapeutic effects in pre-clinical

neuroblastoma studies [42,43,50]. Moreover, the anti-angiogenic

effects of sorafenib in a neuroblastoma model are also described

[43]. Anti-cancer efficacy of TGFb receptor inhibitors either alone

or in combination with chemotherapy is reported in animal model

systems of pancreatic or breast cancers [51,52]. In our study we

observed a 50% cure rate along with decreased tumor growth and

prolonged survival when LY2109761 was combined with sorafenib

and doxorubicin/metformin treatment. These results demonstrate

that this combination of agents significantly inhibited the growth

of subcutaneous neuroblastoma tumors, most likely through

targeting of the heterogenous tumor cell populations and the

mechanisms governing adaptive cellular plasticity. These pre-

clinical findings suggest that combined treatment strategies

specifically targeting the AD and AI phenotypes as well as the

pathways inducing transition may have enhanced clinical efficacy

in children with neuroblastoma.

In conclusion, Id2 and TGFb are key regulators of phenotypic

transition in neuroblastoma tumor cells. Down regulation of Id2 is

sufficient for the cells to change their phenotype from adherent to

anchorage independent cells. This mechanistic study reveals

critical pathways influencing reversible adaptive plasticity in

neuroblastoma and provides the molecular and pharmacological

rationale for translational therapy in patients. Our observations

may also have broad implications for many other high-risk solid

tumors that exhibit reversible adaptive plasticity besides neuro-

blastoma.

Supporting Information

Figure S1 Over-representation of differentially ex-
pressed genes in canonical signaling pathways of
Neuro2a AD and AI cells. The molecules with red color are

up-regulated in AD cells compared to AI. The molecules with

green color are down-regulated in AD cells compared to AI. Over-

representation was defined as significant by a Fisher’s exact test

(P,0.05). The identification of differentially expressed genes that

are overrepresented in signaling pathways provides insight into

molecular events that may be causally related to the gating of AD

and AI phenotypes.

(TIF)

Figure S2 Id2 down regulation in Neuro2a AD cells
using anti-sense oligonucleotide. (a, b) Representative plots

showed that transfection of AD cells with Id2-AS (a) reduced the

rate of proliferation as indicated by BrdU incorporation assay and

(b) increased apoptosis. (c, d) Graphical representation of

percentages of cells that were BrdU+ (c) and apoptotic (d) after

Id2 down regulation. (e) Western blot analysis validated the

decreased expression of Id2 protein after Id2 inhibition in the AD

cells. Data points represent mean 6 S.D. (n = 3). Control: AD

cells, AS: AD cells transfected with Id2 antisense oligonucleotide;

msm: AD cells transfected with mismatched oligonucleotide.

(TIF)

Table S1 List of differentially expressed genes in the AD
and AI phenotypes of Neuro2a cells and ingenuity
pathway of gene expression.

(XLS)
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