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Abstract

Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted
gene expression from paternal and maternal chromosome 15q11–q13, respectively. Imprinted genes at the PWS/AS domain
are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene
expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific
repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved
PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest
another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed
imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression.
Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC
deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased
expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the
maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired
paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal
inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in
the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to
rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a
novel approach to the treatment of PWS.
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Introduction

Genomic imprinting regulates gene expression only from one

allele that is inherited either from the mother or from the father.

Genomic imprinting is important as defects in this process often

result in human diseases. Human chromosome region 15q11–q13

represents an imprinted domain referred as the PWS/AS domain,

because paternal deletions cause Prader-Willi syndrome (PWS)

and maternal deletions cause Angelman syndrome (AS) (for review

[1]). The symptoms of PWS include neonatal feeding difficulties

and hypotonia, morbid obesity developing in early childhood, and

mild mental retardation. AS is characterized by ataxia, absence of

speech, seizures, and mental retardation.

The PWS/AS imprinted domain contains a number of

paternally expressed genes, including MKRN3, MAGEL2, NDN,

C15ORF2, SNURF-SNRPN, and C/D box small nucleolar RNAs

(snoRNAs) SNORD107, SNORD64, SNORD108, SNORD109A,

SNORD116, SNORD115, and SNORD109B [1]. Mouse chromo-

some 7C has a conserved PWS/AS imprinted domain with

exception of presence of Frat3 and absence of C15orf2, Snrod108,

and Snord109a/b [2]. SNURF-SNRPN/Snurf-Snrpn (hereafter abbre-

viated SNRPN/Snrpn) encodes two different proteins within a single

transcript [3]. Many upstream exons of SNRPN/Snrpn were

identified [4,5,6]. With SNRPN/Snrpn exon 1 associated with the

major promoter and upstream exons with weaker promoter

activity, there are alternative transcripts starting from these

SNRPN/Snrpn exons and span the UBE3A/Ube3a antisense

transcript [7,8]. SnoRNAs are encoded within these large SNRPN

sense/UBE3A antisense and Snrpn sense/Ube3a antisense tran-

scripts derived from both SNRPN/Snrpn major and upstream

alternative promoters. SNORD116/Snord116 and SNORD115/

Snord115 are present as multiple copy gene clusters. Among these

paternally expressed imprinted genes, SNORD116 plays a major

role in PWS etiology, because deficiency of this gene caused the

key characteristics of the PWS phenotype in human [9,10,11].

Evidence from two mouse models with different targeted deletions

of Snord116 supports the Snord116 function in early postnatal

growth, motor learning, and feeding regulation [12,13]. Deficiency

of other genes in the PWS/AS domain may also contribute to the

PWS phenotype [2,14,15]. On the other hand, UBE3A is the AS

gene and encodes E6-AP ubiquitin-protein ligase expressed

preferentially from the maternal chromosome in brains [16,17].

Mutations of the Ube3a in mice resulted in the phenotype

resembling human AS [18,19].
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Imprinted genes at the PWS/AS domain are coordinately

regulated through a cis-acting imprinting center that contains two

functional elements, the PWS-IC and AS-IC. Numerous studies in

humans patients and mouse models have led to the suggestion that

on the paternal chromosome, the PWS-IC is a positive regulatory

element required for establishment and maintenance of paternal

imprinting [6,20,21], whereas on the maternal chromosome, the

AS-IC is suggested to function in allele-specific repression of the

PWS-IC to prevent a paternal imprinting program [22,23,24].

However, the equivalent of the human AS-IC element has not yet

been identified in mice. Three mouse models for the PWS-IC

deletions have been generated by the introduction of deletions at

the Snrpn promoter. In first model, a deletion of a 35-kb fragment

at the paternal Snrpn promoter led to a maternal pattern of DNA

methylation and gene expression on the paternal chromosome,

resulting in perinatal lethality [20]. In another study, paternal

inheritance of a 4.8-kb deletion (D4.8) at the Snrpn exon 1 caused a

mosaic imprinting defect, resulting in partial lethality and growth

retardation [6]. In the third study, a 6-kb deletion extending 1 kb

further upstream of the D4.8 region at the Snrpn promoter exhibits

a complete PWS-IC deletion phenotype [25]. On the other hand,

attempts to define the equivalent of the human AS-IC element by

targeted mutations in mice so far have been unsuccessful [26,27].

However, an insertion/duplication mutation 13 kb upstream of

Snrpn exon 1 resulted in an AS imprinting defect [26], and a

targeted replacement of mouse PWS-IC with human PWS-IC

caused a maternal imprinting defect with an AS phenotype [14].

In previous study, we have used the D4.8 mouse model to

demonstrate the function of the PWS-IC in the regulation of

paternal imprinting [6]. In current study, we used this mouse

model to investigate the imprinting features on the maternal

chromosome regulated by the PWS-IC. If the PWS-IC is required

only for paternal imprinting and is suppressed on the maternal

chromosome, then, deletion of the PWS-IC should not affect the

maternal imprint. Unexpectedly, we found that maternal inher-

itance of the PWS-IC deletion resulted in a maternal imprinting

defect accompanied by an altered maternal pattern of gene

expression and epigenetic modifications, toward a paternal state.

Our findings provide the first evidence that the PWS-IC is

required for maternal imprinting in mice.

Results

Maternal inheritance of the PWS-IC D4.8 mutation
activated the upstream alternative Snrpn promoter in cis

To study the maternal imprinting features regulated by the

PWS-IC, we investigated the maternal pattern of gene expression

in the mouse model with the PWS-IC D4.8 mutation at Snrpn exon

1. Snrpn is paternally expressed from exon 1 with the major

promoter and from alternative upstream exons with weaker

promoter activity [6]. Although exon 1 of Snrpn was removed by

the D4.8 mutation, Snrpn is still able to transcribe from the

upstream exon promoter, initiating at alternative upstream exons

splicing to Snrpn exon 2 [6] (Figure 1A). Using RT-PCR and

quantitative RT-PCR analyses, the alternative Snrpn transcripts

could be detected by primers specific for upstream exon 1 and

exon 3 (u1-ex3) to measure the weaker promoter activity

(Figure 1A and 1B), and by primers specific for the downstream

exon 7 (ex7) to measure both major and weaker promoter activity

(Figure 1A and 1C). The analysis of maternal-specific expression of

the Snrpn transcripts was accomplished in mice with paternal

inheritance of a deletion spanning from exon 2 of Snrpn to Ube3a

(DS-U) [28]. Because Snrpn (from exon 2 to exon 10) was removed

by the DS-U mutation on the paternal chromosome, the Snrpn u1-

ex3 and ex7 transcripts measured, if any, could only be expressed

from the maternal chromosome (Figure 1A). As the paternally

expressed imprinted gene Snrpn was not expressed from the wild-

type maternal chromosome in the m+pDS-U mice (Figure 1B, 1C,

and 1F, e, m+pDS-U), it is surprising that Snrpn was partially

expressed from the maternal D4.8 chromosome in the mD4.8pDS-U

mice (Figure 1B and 1F, c, mD4.8/pDS-U, 21% of the u1-ex3

transcripts; Figure 1C and 1F, c, mD4.8/pDS-U, 35% of the ex7

transcripts), compared with that in the wild-type mice (Figure 1B,

1C, and 1F, a, m+/p+). These results suggested that maternal

inheritance of the PWS-IC D4.8 mutation partially activated the

paternally expressed imprinted gene Snrpn on the maternal

chromosome. On the other hand, when the DS-U mutation was

on the maternal chromosome, Snrpn is fully expressed from the

wild-type paternal allele in the mDS-Up+ mice (Figure 1B and 1F, d,

mDS-U/p+, 97% of the u1-ex3 transcripts; Figure 1C and 1F, d,

mDS-U/p+, 108% of the ex7 transcripts), and is partially repressed

on the paternal D4.8 chromosome in the mDS-UpD4.8 mice

(Figure 1B and 1F, b, mDS-U/pD4.8, 39% of the u1-ex3 transcripts;

Figure 1C and 1F, b, mDS-U/pD4.8, 27% of the ex7 transcripts),

consistent with the previous report [6].

The paternally expressed imprinted genes Snord116 and

Snord115 are encoded within the large Snrpn sense/Ube3a antisense

transcripts whose expression is driven by the Snrpn promoter

(Figure 1F, top). To further confirm activation of the Snrpn

promoter on the maternal D4.8 chromosome, we examined

expression of Snord116 and Snord115. Since both Snord116 and

Snord115 were also deleted by the DS-U mutation, maternal-

specific expression of Snord116 and Snord115 was analyzed in mice

with paternal inheritance of the DS-U mutation, so that the

detected Snord116 and Snord115 transcripts could only be from the

maternal chromosome. We found that Snord116 and Snord115 was

not expressed from the maternal wild-type chromosome in the

m+pDS-U mice (Figure 1D–F, e, 0%), but a small amount of the

Snord116 and Snord115 transcripts was expressed from the maternal

D4.8 chromosome in the mD4.8pDS-U mice (Figure 1D and 1F, c,

mD4.8/pDS-U, 8% of the Snord116 transcripts; Figures 1E and 1F, c,

mD4.8/pDS-U, 10% of the Snord115 transcripts). These suggested

that maternal inheritance of the D4.8 mutation partially activated

the Snrpn promoter resulting in expression of Snord116 and

Snord115. On the other hand, Snord116 and Snord115 were also

partially expressed from the paternal D4.8 chromosome in the

mDS-UpD4.8 mice (Figure 1D and 1F, b, mDS-U/pD4.8, 12% of the

Snord116 transcripts; Figure 1E and 1F, b, mDS-U/pD4.8, 14% of

the Snord115 transcripts).

Activation of the Snrpn promoter by maternal inheritance of the

D4.8 mutation was demonstrated not only when paternal

inheritance of the DS-U mutation in the mD4.8/pDS-U mice but

also when paternally inheriting the wild-type allele in the mD4.8/p+

mice, since there were significant increases of the Snrpn u1-ex3,

Snrpn ex7, Snord116, and Snord115 transcripts in the mD4.8/p+ mice

compared with those in wild-type mice (Figure S1).

The paternally expressed imprinted gene Ndn was
expressed from the maternal chromosome carrying the
D4.8 mutation

The PWS-IC plays a dual role as the Snrpn promoter and as an

IC in the PWS/AS region [6]. Given that the PWS-IC D4.8

mutation affected the maternal imprinting of the adjacent Snrpn

upstream promoter (Figure 1), we investigated whether the D4.8

mutation also perturbs its IC function in maternal imprinting.

Transcription of a paternally expressed imprinted gene Ndn was

analyzed as an index of the extent of any affected gene expression

within the PWS/AS region, since the Ndn locus is located about

PWS-IC Is Required for Maternal Imprinting
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1 Mb upstream of the Snrpn promoter. Maternal-specific expres-

sion of the Ndn transcripts was analyzed in mice with paternal

inheritance of a deletion on Ndn (DNdn) [29]. In these mice, any

detected Ndn transcripts were expressed exclusively from the

maternal chromosome and not from the paternal DNdn chromo-

some, since the primer pair used for RT-PCR and qRT-PCR

analyses is located at the region deleted in the DNdn mutation

(Figure 2A). Our results showed that Ndn was not transcribed from

the maternal wild-type chromosome in the m+pDNdn mice

(Figure 2B and 2D, b), but was partially expressed from the

Figure 1. Expression analysis of Snrpn, Snrod116, and Snord115 in mice carrying the D4.8 mutation and/or the DS-U mutation. (A)
Genomic structure of the maternal D4.8 allele and the paternal DS-U allele in the mD4.8pDS-U mice. The D4.8 mutation removes exon 1 of Snrpn. Snrpn
is still able to transcribe from the upstream exons splicing to Snrpn exon 2. The relative positions of the primers specific for upstream exon 1 and exon
3 (u1-ex3) and for the downstream exon 7 (ex7) designed for RT-PCR and qRT-PCR are indicated (half-arrows). The DS-U mutation removes Snrpn from
exon 2 to exon 10. (B–E) The Snrpn u1-ex3 (B), Snrpn exon 7 (C), Snrod116 (D), and Snord115 (E) transcripts were analyzed by RT-PCR (top) and
quantitative RT-PCR (bottom). Total RNA was isolated from brains of wild-type mice (a, m+p+) (n = 5), mice inheriting the DS-U mutation maternally
and the D4.8 mutation paternally (b, mDS-UpD4.8) (n = 5), mice inheriting the D4.8 mutation maternally and the DS-U mutation paternally (c, mD4.8pDS-

U) (n = 5), mice with only the maternally inherited DS-U mutation (d, mDS-Up+) (n = 5), and mice with only the paternally inherited DS-U mutation (e,
m+pDS-U) (n = 5). RT-PCR analyses were performed using 2.0 mg total RNA (top). For quantitative RT-PCR, the levels of gene expression from wild-type
mice were set as 1 (bottom). Transcripts of Hprt were amplified as an endogenous control for the Snrpn u1-ex3 transcripts, since their sizes were
similar. Transcripts of Gapdh were amplified as an endogenous control for the Snrpn exon 7, Snrod116, and Snord115 transcripts. RT-PCR products:
Snrpn u1-ex3, 295 bp; Hprt, 266 bp; Snrpn ex7, 171 bp; Snrod116, 98 bp; Snrod115, 79 bp; Gapdh, 97 bp. (F) Schematic representation of the mouse
PWS/AS domain (top) and summary of gene expression in mice of the five different genotypes (bottom, a–e). The Snrpn sense/Ube3a antisense
transcripts initiated from Snrpn exon 1 with the major promoter activity and from Snrpn upstream exons with weaker promoter activity are marked as
bold and thin arrows, respectively. SnoRNAs are encoded within these large Snrpn sense/Ube3a antisense transcripts derived from both Snrpn major
and upstream exon promoters. Snord116 and Snord115 are multiple copy gene clusters. The centromeric (cen) and the telomeric (tel) positions are
indicated. Paternally and maternally expressed genes are marked as blue and red boxes, respectively. DS-U indicates a large deletion from Snrpn exon
2 to Ube3a. D4.8 indicates a 4.8-kb deletion at Snrpn exon 1. The levels of the Snrpn u1-ex3, Snrpn exon 7, Snrod116, and Snord115 transcripts from
wild-type mice were set as 100%. Mat, maternal chromosome; Pat, paternal chromosome.
doi:10.1371/journal.pone.0034348.g001

PWS-IC Is Required for Maternal Imprinting
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maternal D4.8 chromosome in the mD4.8pDNdn mice (Figure 2B and

2D, c, 28%). These results suggested that maternal inheritance of

the D4.8 mutation partially activated the paternally expressed

imprinted gene Ndn on the maternal chromosome. Therefore, the

maternal PWS-IC D4.8 mutation disturbed not only the maternal

imprint of the adjacent Snrpn upstream promoter but also the

maternal imprint of the Ndn promoter which is 1 Mb away from

the D4.8 region.

In addition, the abundance of the Ndn transcripts was reduced

when the D4.8 mutation was on the paternal chromosome

(Figure 2C and 2D, d, m+/pD4.8, 27%), as previously reported

[6]. Importantly, mice with the D4.8 mutation on both maternal

and paternal chromosomes expressed a level of the Ndn transcripts

comparable with that in the wild-type controls (Figure 2C and 2D,

a, m+/p+, 100%; f, mD4.8/pD4.8, 101%). These results suggested

that maternal inheritance of the D4.8 mutation compensated the

loss of Ndn expression due to paternal inheritance of the D4.8

mutation. Accordingly, we found a small but consistent increase in

Ndn expression in mice with only the maternally inherited D4.8

mutation (Figure 2C and 2D, e, mD4.8/p+, 120%).

Figure 2. Expression analysis of the paternally expressed gene Ndn in mice carrying the D4.8 mutation and/or the DNdn mutation.
(A) Genomic structure of the maternal wild-type Ndn allele and the paternal DNdn allele in the m+pDNdn mice. The relative position of the primer pair
used for RT-PCR and qRT-PCR is indicated (half-arrows). In the DNdn mutation, the open reading frame of Ndn was deleted by a replacement of b-
galactosidase (b-gal) and a neomycin-resistant cassette (Neo). (B, C) The Ndn transcripts were analyzed by RT-PCR (top) and quantitative RT-PCR
(bottom). Total RNA was isolated from brains of wild-type mice (B and C, a, m+p+) (n = 8), mice with paternal inheritance of the DNdn mutation (B, b,
m+pDNdn) (n = 3), mice inheriting the D4.8 mutation maternally and the DNdn mutation paternally (B, c, mD4.8pDNdn) (n = 3), mice with paternal
inheritance of the D4.8 mutation (C, d, m+pD4.8) (n = 5), mice with maternal inheritance of the D4.8 mutation (C, e, mD4.8p+) (n = 5), and mice with the
D4.8 mutation from both the parents (C, f, mD4.8pD4.8) (n = 5). RT-PCR analyses were performed using 2.0 mg total RNA with (+) and without (2)
reverse transcriptase (RT). For quantitative RT-PCR, the levels of gene expression from wild-type mice were set as 1. Transcripts of Hprt were amplified
as an endogenous control. RT-PCR products: Ndn, 365 bp; Hprt, 266 bp. (D) Schematic representation of the mouse PWS/AS domain (top) and
summary of Ndn expression in mice of the six different genotypes (bottom, a–f). The Ndn transcripts are marked as an arrow. The centromeric (cen)
and the telomeric (tel) positions are indicated. Paternally expressed imprinted genes are marked as blue boxes. DNdn indicates a deletion at Ndn. D4.8
indicates a 4.8-kb deletion at Snrpn exon 1. The level of the Ndn transcripts from wild-type mice was set as 100%. Mat, maternal chromosome; Pat,
paternal chromosome.
doi:10.1371/journal.pone.0034348.g002

PWS-IC Is Required for Maternal Imprinting
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Expression of the maternally expressed imprinted gene
Ube3a was reduced when the D4.8 mutation was on the
maternal chromosome

While the paternally expressed imprinted genes were activated,

it was of interest to examine whether the maternally expressed

imprinted gene was repressed. Ube3a, known as the AS gene,

encodes E6-AP ubiquitin-protein ligase whose expression derives

preferentially from the maternal chromosome in brains [16,17],

and is negatively regulated by the paternal expressed Snrpn sense/

Ube3a antisense transcripts derived from the Snrpn promoter

[14,30,31]. Since the maternal Snrpn promoter was activated by

maternal inheritance of the D4.8 mutation (Figure 1), we found a

decreased level of E6-AP in the mD4.8p+ mice (Figure 3A and 3B,

d, 78% of E6-AP), compared with that in wild-type mice

(Figure 3A and 3B, a, 100% of E6-AP). Maternal-specific

reduction of Ube3a expression by maternal inheritance of the

D4.8 mutation was further analyzed in mice with paternal

inheritance of the DS-U mutation. Because Ube3a was deleted

by the DS-U mutation on the paternal chromosome, Ube3a could

only express from the maternal chromosome. Compared to the

maternal wild-type chromosome in the m+pDS-U mice (Figure 3A

and 3B, b, 72% of E6-AP), the maternal D4.8 chromosome

expressed a reduced level of E6-AP in the mD4.8pDS-U mice

(Figure 3A and 3B, c, 46% of E6-AP). These results suggested that

maternal expression of Ube3a was partially repressed by maternal

inheritance of the D4.8 mutation.

Together, we found that maternal inheritance of the PWS-IC

D4.8 mutation changed the maternal pattern of gene expression

toward a paternal state: the paternally expressed imprinted genes

were partially activated and the maternally expressed imprinted

genes were partially repressed on the maternal D4.8 chromosome.

Maternal inheritance of the D4.8 mutation
complemented a postnatal lethality phenotype in PWS
mouse models paternally inheriting the D4.8 or DS-U
mutations

The functional significance of the acquired paternal pattern of

gene expression on the maternal chromosome was further

investigated by genetic complementation experiments in two

PWS mouse models paternally inheriting the D4.8 or DS-U

mutations. The D4.8 mutation did not affect survival when

inherited maternally (Table 1, mating II), but caused postnatal

lethality in 56% of the mice when inherited paternally (Table 1,

mating III), as previously reported [6]. Interestingly, there was an

almost complete rescue of the lethality in mice inheriting the D4.8

mutation from both parents, with 96% survival rate for mice

observed up to 2 months of age (Table 1, mating IV). In addition,

while all mice with only paternal inheritance of the DS-U mutation

died (Table 1, mating V), double heterozygous mice inheriting the

DS-U mutation paternally and the D4.8 mutation maternally

survived close to the expected Mendelian ratios (Table 1, mating

VI). These results suggested that maternal inheritance of the D4.8

Figure 3. Expression analysis of the maternally expressed gene Ube3a in mice carrying the D4.8 mutation and/or the DS-U mutation.
(A) Protein was extracted from the brains of wild-type mice (a, m+p+) (n = 5), mice with only the paternally inherited DS-U mutation (b, m+pDS-U)
(n = 5), mice inheriting the D4.8 mutation maternally and the DS-U mutation paternally (c, mD4.8pDS-U) (n = 5), and mice with only maternal inheritance
of the D4.8 mutation (d, mD4.8p+) (n = 5). Western blot analysis was performed using antibodies against E6-AP or actin. Expression was quantitated by
densitometry. The level of E6-AP was normalized against the level of actin in each sample. The normalized level of E6-AP from the wild-type mouse
was set as 1. E6-AP, ,110 kDa; actin, ,45 kDa. (B) Schematic representation of the mouse PWS/AS domain (top) and summary of Ube3a expression in
mice of the four different genotypes (bottom, a–d). Expression of Ube3a is represented by an arrow. The centromeric (cen) and the telomeric (tel)
positions are indicated. Paternally and maternally expressed genes are shown as blue and red boxes, respectively. DS-U indicates a large deletion
from Snrpn exon 2 to Ube3a. D4.8 indicates a 4.8-kb deletion at Snrpn exon 1. The level of E6-AP in wild-type mice was set as 100%. Mat, maternal
chromosome; Pat, paternal chromosome.
doi:10.1371/journal.pone.0034348.g003
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mutation complemented the lethality phenotype in the PWS

mouse models paternally inheriting the D4.8 or DS-U mutations.

Maternal inheritance of the D4.8 mutation
complemented a growth retardation phenotype in PWS
mouse models paternally inheriting the D4.8 or DS-U
mutations

Paternal inheritance of the D4.8 or DS-U mutations resulted in

not only postnatal lethality but also growth retardation in surviving

mice [6,28]. The heterozygous pups paternally inheriting the D4.8

mutation were smaller compared to the age-matched wild-type

mice (Figure 4A, m+p+ and Figure 4B, m+pD4.8), as previously

reported [6]. Interestingly, homozygous pups inheriting the D4.8

mutation from both parents had an average body size indistin-

guishable from age-matched wild-type mice (Figure 4A, m+p+, and

Figure 4C, mD4.8pD4.8). Furthermore, the mD4.8pDS-U double

heterozygous pups obtained by mating female mice carrying the

D4.8 mutation to male mice carrying the DS-U mutation have

body size similar to age-matched wild-type littermates and

littermates with only the maternally inherited D4.8 mutation

(mD4.8p+) (Figure 4A and 4D). Measurements of body weight from

groups of mice with those five different genotypes for up to 6 weeks

clearly showed that maternal inheritance of the D4.8 mutation

complements a growth retardation phenotype caused by paternal

inheritance of the D4.8 or DS-U mutations (Figure 4E).

Notably, the maternal D4.8 chromosome expressed low levels of

the paternally expressed imprinted genes Snrpn (21%–35%),

Snord116 (8%), Snord115 (10%), and Ndn (28%) (Figure 1 and 2),

which were however sufficient to complement postnatal lethality

and growth retardation phenotypes in the mouse models of PWS.

Maternal inheritance of the D4.8 mutation altered
histone modifications at the Snrpn and Ndn promoters

Parent-of-origin specific epigenetic modifications on the PWS-

IC correlate with transcriptional status and parent-of-origin

specific epigenotypes of the imprinted genes spread over the

PWS/AS domain. Given the paternal pattern of gene expression

on the maternal D4.8 chromosome (Figures 1–3), we determined

whether epigenetic status at the PWS/AS domain was altered by

maternal inheritance of the D4.8 mutation. First, we analyzed

histone modification profiles within the PWS/AS imprinted

domain by ChIP-on-chip assays that combined chromatin

immunoprecipitation to identify regions enriched with trimethyla-

tion on histone H3 lysine 4 (H3K4me3) and mouse genomic tiling

array including sequences of the PWS/AS region from Peg12 to

ATP10A (Chr7: 64,846,543–69,740,076) (Figure 5A). Within the

Snrpn locus, wild-type mice displayed a cluster of ChIP peaks

surrounding the Snrpn promoter with the highest H3K4me3

enrichment located within a region corresponds to the D4.8

mutation (Figure 5B and 5D, m+p+, Snrpn peak 1). Surprisingly,

while paternal inheritance of the D4.8 mutation resulted in

disappearance of the entire ChIP cluster (Figure 5B, m+pD4.8),

maternal inheritance of the D4.8 mutation in the mD4.8pD4.8 mice

partially restored H3K4me3 modification with the highest peak

shifted to the right upstream of the D4.8 region (Figure 5B and 5E,

mD4.8pD4.8, Snrpn peak 2). Accordingly, the mD4.8p+ mice had a

combinatorial pattern of the mD4.8pD4.8 and wild-type mice

showing two ChIP peaks with high H3K4me3 enrichment

(Figure 5B, 5D, and 5E, mD4.8p+, Snrpn peak 1 and 2). Notably,

when maternal inheritance of the D4.8 mutation, the acquired

H3K4me3 enrichment (Snrpn peak 2) was located within 1 kb

further upstream of the D4.8 region (Figure 5B, mD4.8pD4.8 and

mD4.8p+, Snrpn peak 2), where the full PWS-IC functional element

must include with the D4.8 region [25].

Within the Ndn locus, paternal inheritance of the D4.8 mutation

in the m+pD4.8 mice reduced overall amplitude of H3K4me3 by

half, whereas maternal inheritance of the D4.8 mutation in the

mD4.8pD4.8 mice restored the amplitude of H3K4me3 to the extent

comparable with that in wild-type mice (Figure 5C and 5F),

suggesting that maternal inheritance of the D4.8 mutation

increased H3K4me3 at Ndn. Since H3K4me3 is a mark for an

active state of gene expression, these findings are consistent with

the results that expression of Ndn was partially inhibited in the

m+pD4.8 mice, but was restored to a normal level in the mD4.8pD4.8

mice (Figure 2C), due to activation of Ndn on the maternal D4.8

chromosome (Figure 2B).

The alteration of H3K4me3 modification was further confirmed

by ChIP combined with quantitative PCR analysis (ChIP-qPCR).

We designed a primer pair to amplify the Snrpn promoter right

upstream of the D4.8 region for qPCR (Figure 6A). The qPCR

fragment includes the Snrpn peak 2 region shown in Figure 5B.

Another primer pair was designed to amplify the Ndn locus

including the Ndn peak 1 region shown in Figure 5C (Figure 6B).

ChIP-qPCR analyses showed a marked reduction of H3K4me3 at

both Snrpn and Ndn in the m+pD4.8 mice when compared with those

in wile-type mice, whereas the mD4.8p+ mice had significant

increases in H3K4me3 (Figure 6C and 6D). These results support

ChIP-on-chip analyses which showed reductions of H3K4me3

enrichment at Snrpn and Ndn when paternal inheritance of the

Table 1. Maternal inheritance of the D4.8 mutation rescued lethality caused by paternal inheritance of the D4.8 or DS-U
mutations.

Parental genotypes Offspring

Female Male
Total # of born
pups

Total # of
dead pups Total # of survivors

Offspring genotypes {# of
survivors (survival rate)}

I +/+ +/+ 28a = 2 0 28 +/+{28 (100%)}

II D4.8/D4.8 +/+ 42b = 3 0 42 D4.8/+{42 (100%)}

III +/+ D4.8/D4.8 48c = 3 21 27 +/D4.8 {27 (56%)}

IV D4.8/D4.8 D4.8/D4.8 95d = 6 4 91 D4.8/D4.8 {91 (96%)}

V +/+ DS-U/+ 56e = 4 35 21 +/+{21}; +/DS-U {0 (0%)}

VI D4.8/D4.8 DS-U/+ 53f = 3 1 52 D4.8/+{27}; D4.8/DS-U {25 (96%)}

The numbers of breeding cages are indicated by a, b, c, d, e, f, and g.
Survival offspring were observed up to 2 months of age.
doi:10.1371/journal.pone.0034348.t001
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D4.8 mutation and increases of H3K4me3 when maternal

inheritance of the D4.8 mutation (Figure 5). To determine

whether the effect of maternal inheritance of the D4.8 mutation

is on the maternal allele, we used mice with paternal inheritance of

the DNdn mutation. In this assay, only the wild-type Ndn allele on

the maternal chromosome could be detected because the primer

pair designed for ChIP-qPCR is located at the region deleted in

the DNdn mutation (Figure 6B). Compared with wild-type mice,

the m+pDNdn mice showed a dramatic reduction of H3K4me3

(Figure 6E). This result clearly indicates paternal-specific

H3K4me3 at Ndn and paternal deletion contributes to the

significant reduction of H3K4me3. This is similar to the human

NDN promoter showing paternal-specific association with

H3K4me3 [32]. When maternally inheriting the D4.8 mutation,

an elevated level of H3K4me3 was detected in the mD4.8pDNdn

mice compared with the m+pDNdn mice (Figure 6E). Since the

paternal copy of Ndn was deleted in these mice, the elevated

H3K4me3 was derived from the remaining maternal copy of Ndn

in the mD4.8pDNdn mice.

We next examined acetylation of histone 3 (H3Ac) as an

additional marker of an active gene expression state. ChIP-qPCR

analyses showed reductions of H3Ac at both Snrpn and Ndn in the

m+pD4.8 mice (Figure 6F and 6G, respectively). On the other hand,

maternal inheritance of the D4.8 mutation did not affect H3Ac at

the Snrpn promoter in the mD4.8p+ mice (Figure 6F), but did

increase H3Ac at Ndn (Figure 6G). When the paternal Ndn was

deleted in the m+pDNdn mice, a marked reduction of H3Ac was

observed (Figure 6H), suggesting the paternal copy is the one

preferentially modified with H3Ac. This is similar to the human

NDN promoter showing paternal bias with H3Ac [32]. Similar to

increased H3K4me3 (Figure 6E), mD4.8pDNdn mice showed an

Figure 4. Rescue of growth retardation in the PWS mouse models by maternal inheritance of the D4.8 mutation. (A) Wild-type
offspring were obtained from mating a wild-type female with a wild-type male. (B) Growth retardation was observed in the m+pD4.8 offspring
obtained from mating a wild-type female with a male carrying the D4.8 mutation. (C) Growth retardation was rescued in the mD4.8pD4.8 offspring
inheriting the D4.8 mutation from both the parents. (D) Double heterozygous mD4.8pDS-U pups attained a normal body weight indistinguishable from
the mD4.8p+ littermates. All photographs were taken when groups of litters were 10 days of age. (E) The growth retardation was analyzed by
weighting groups of mice with those five different genotypes up to 6 weeks of age. m+p+, n = 6; m+pD4.8, n = 4; mD4.8pD4.8, n = 5; mD4.8pDS-U, n = 5;
mD4.8p+, n = 5.
doi:10.1371/journal.pone.0034348.g004
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increase of H3Ac on the maternal copy of Ndn compared to the

m+pDNdn mice (Figure 6H).

Finally, we examined H3K9me3 which is a mark of a repressive

chromatin state. ChIP-qPCR analyses showed that the m+pD4.8

mice had marked increases in H3K9me3 at both Snrpn and Ndn,

whereas the mD4.8p+ mice showed reductions of H3K9me3

compared with wild-type mice (Figure 6I and 6J). Furthermore,

the mD4.8pDNdn mice showed the reduction of H3K9me3 on the

maternal copy of Ndn when compared with the m+pDNdn mice

(Figure 6K). There was approximately 2-fold enrichment of

H3K9me3 in the m+pDNdn mice compared with wild-type mice

(Figure 6K). It should be noted that in ChIP-qPCR analysis, the

level of ChIP was normalized against the level of input in each

sample: ChIP from the m+pDNdn mice was normalized against the

input with only one copy of the maternal Ndn allele, while ChIP

from the m+p+ mice was normalized against the input with two

Ndn copies from both parents. It is possible that the maternal copy

of Ndn could be preferentially modified with H3K9me3, which is

similar to the human NDN promoter with H3K9me3 towards

maternal bias [32]. Therefore, after normalization with input, the

ChIP-qPCR result might show a 2-fold enrichment of H3K9me3

in the m+pDNdn mice compared with the m+p+ mice, even though

both mice could have similar levels of H3K9me3 enrichment on

their maternal wild-type copies of Ndn. However, we can not rule

out the possibility that paternal inheritance of the DNdn mutation

acts in trans to increase H3K9me3 on the maternal chromosome.

Maternal inheritance of the D4.8 mutation altered DNA
modification at Ndn and Mkrn3

Next, we analyzed whether maternal inheritance of the D4.8

mutation affects the DNA methylation status at the PWS/AS

domain. Silencing of the maternal alleles of Snrpn, Ndn, and Mkrn3

is associated with maternal-specific CpG methylation on their

promoters [33,34,35,36]. Since the D4.8 mutation deletes the CpG

island at the Snrpn promoter, we examined CpG methylation at the

Ndn and Mkrn3 loci. Consistent with an earlier report [6], Southern

blot analysis using the methylation-sensitive SacII enzyme revealed

that CpG methylation on the SacII site at the Ndn locus was not

affected by maternal inheritance of the D4.8 mutation (Figure S2).

However, use of a more sensitive analysis with sodium bisulfite

sequencing revealed a lesser degree of methylation of the 42 CpGs

on the Ndn promoter in the mD4.8p+ mice compared with that in

wild-type mice (Figure 7B, top). Since CpG methylation at Ndn is

maternal-specific [35], we further used mice with paternal

inheritance of the DNdn mutation to demonstrate maternal-

specific reduction of CpG methylation. To enable detection of

methylation only on the maternal Ndn allele, the reverse primers

used in PCR to amplify the bisulfite-treated DNA were positioned

within the region deleted in the DNdn mutation (Figure 7A).

Sodium bisulfite sequencing analyses showed decreased CpG

methylation at the Ndn promoter on the maternal D4.8

chromosome in the mD4.8pDNdn mice (Figure 7B, bottom, right),

when compared to the maternal wild-type chromosome in the

m+pDNdn mice (Figure 7B, bottom, left). These results suggest that

maternal inheritance of the D4.8 mutation decreased CpG

methylation on the maternal Ndn allele.

Finally, methylated DNA immunoprecipitation with 5-methyl-

cytidine specific antibody (MeDIP) followed by quantitative PCR

analysis (MeDIP-qPCR) confirmed a reduction of methylated

DNA in mice with maternal inheritance of the D4.8 mutation

(mD4.8p+) (Figure 7C, left). In contrast, an increase of methylated

DNA was found in mice with paternal inheritance of the D4.8

mutation (m+pD4.8) (Figure 7C, left), which is consistent with the

previous report [6]. Using the primer pair located at the region

deleted in the DNdn mutation for MeDIP-qPCR analyses

(Figure 7A), we confirmed maternal inheritance of D4.8 mutation

contributes to reduction of DNA methylation at the maternal Ndn

allele, when the mD4.8pDNdn mice was compare with the m+pDNdn

mice (Figure 7C, right).

In addition to Ndn, we found that Mkrn3 locus exhibited a

similar alteration of DNA methylation by sodium bisulfite

sequencing and MeDIP-qPCR analyses (Figure 7E and 7F),

despite Southern blot analysis from an earlier report showed CpG

methylation on the NotI site was not affected by maternal

inheritance of the D4.8 mutation [6]. When sodium bisulfite

sequencing were used to analyze 22 CpG sites at the Mkrn3

promoter (Figure 7D), the mD4.8p+ mice showed a lesser degree of

CpG methylation when compared with that in wild type mice

(Figure 7E). Similarly, MeDIP-qPCR analyses demonstrated a

reduction of methylated DNA in the mD4.8p+ mice (Figure 7F). In

contrast, an increase of methylated DNA was found in the

m+pD4.8mice (Figure 7F), which is consistent with the previous

report [6]. These results suggested that maternal inheritance of the

D4.8 mutation decreased DNA modification on Ndn and Mkrn3.

Taken together, maternal inheritance of the D4.8 mutation have

a role in controlling allelic differential modifications at Ndn with

increased H3K4me3 and H3Ac, decreased H3K9me3, and

reduced DNA methylation, by which the maternal allele is

changed toward a more paternal epigenotype. This was correlated

with activation of the paternally expressed imprinted gene Ndn on

the maternal chromosome by maternal inheritance of the D4.8

mutation (Figure 2).

Discussion

Studies of the PWS-IC deletions in human patients and mouse

models have suggested that the PWS-IC positively regulates

paternal-specific gene expression and is responsible for establish-

ment and maintenance of the paternal imprint [6,20,21]. On the

other hand, it has been proposed that the AS-IC functions in

allele-specific repression of the PWS-IC to prevent the paternal

program on the maternal chromosome, and this interpretation is

based on genetic analysis showing that the maternal AS-IC

imposes a silent epigenetic state on the neighboring SNRPN/Snrpn

promoter [22,23,24]. However, the equivalent of the human AS-

IC element has not been identified in mice. In contrast to the

current hypothesis that the PWS-IC as a positive regulator for the

paternal imprinting program must be repressed on the maternal

chromosome, our findings suggest another dimension that the

PWS-IC is also required for a maternal chromosome to have the

maternal pattern of gene expression. The maternal chromosome

carrying the PWS-IC D4.8 mutation failed to properly silence the

paternal imprinting program, suggesting that the maternal PWS-

Figure 5. Distribution of H3K4me3 at the PWS/AS domain determined by ChIP-on-chip analysis. (A) The ChIP-on-chip profiles of
H3K4me3 enrichment at the PWS/AS domain. H3K4me3 enriched peaks at gene loci are marked by arrows. X-axis represents the PWS/AS region
(Chr7: 64,846,543–69,740,076). Y-axis represents normalized ChIP/input ratios. (B,C) Zoom in views of the Snrpn (B) and Ndn (C) loci. The region of the
D4.8 mutation at the Snrpn promoter is indicated as a black box. (D–F) Quantification of H3K4me3 enriched peaks at Snrpn (D, peak 1; E, peak 2) and
Ndn (F, peak 1) by using three mice for each genotype to perform the ChIP-on-chip experiments. Figure 5A–C showed H3K4me3 enriched peaks from
one set of mice including four different genotypes.
doi:10.1371/journal.pone.0034348.g005
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IC negatively regulates the paternally expressed imprinted genes,

in stark contrast to its known function on the paternal

chromosome as a positive regulator for paternal-specific gene

expression.

The maternally expressed gene UBE3A/Ube3a is the AS gene

and is negatively regulated by the paternal expressed SNRPN

sense/UBE3A antisense and Snrpn sense/Ube3a antisense tran-

scripts derived from the SNRPN and Snrpn promoters, respectively

[14,30]. On the wild-type maternal chromosome, silencing of the

Snrpn promoter results in expression of Ube3a (Figure 8A, c).

Previously, we demonstrated that maternal transmission of an

insertion/duplication mutation 13 kb upstream of Snrpn exon 1

(AS-ICan, an anchor mutation on the AS-IC) activates the Snrpn

promoter, resulting in severely decreased expression of Ube3a,

causing AS phenotypes [26] (Figure 8A, e). In this report, we

found that when the main Snrpn promoter was deleted, the

maternal PWS-IC D4.8 mutation activates the weaker upstream

alternative Snrpn promoter and expresses a low level of the Snrpn

sense/Ube3a antisense transcripts, resulting in mild reduction of

Ube3a expression (Figure 8A, d). Phenotype effects of the D4.8

mutation are being studied further for the symptoms of AS. In

both cases of the D4.8 mutation and the AS-ICan mutation,

activation of paternally expressed imprinted genes on the maternal

chromosome leads to the ability to complement the lethality and

growth retardation phenotypes in mouse models of PWS. In

addition, the acquisition the paternal gene expression pattern was

correlated with alteration of DNA methylation on the maternal

chromosome toward to a more paternal epigenotype: the AS-ICan

mutation causes loss of Snrpn methylation and decreased Ndn

methylation (Figure 8A, e) and the D4.8 mutation causes decreased

Ndn methylation on the maternal chromosome (Figure 8A, d),

while the Ndn and Snrpn promoters are fully methylated on the

maternal wild-type chromosome (Figure 8A, c)

The PWS-IC has a dual function, one as the Snrpn promoter and

the other as an IC regulator of the PWS/AS domain. Maternal

transmission of a targeted replacement of mouse PWS-IC with

human PWS-IC (PWS-ICHs) expressed the Snrpn sense/Ube3a

antisense transcripts from the inserted human SNRPN promoter,

but did not affect any other paternally expressed imprinted

transcripts on the maternal chromosome (Figure 8A, f) [14],

suggesting that the IC function was not lost. In our mouse model,

maternal inheritance of the PWS-IC D4.8 mutation disrupts not

only maternal imprinting of Snrpn but also maternal imprinting of

Ndn which is 1 Mb away from the D4.8 region (Figure 8A, d),

suggesting that this D4.8 mutation perturbs the IC function on the

maternal imprint at the PWS/AS region. In addition, maternal

inheritance of the PWS-ICHs rescues lethality in a PWS mouse

model inheriting the PWS-IC 35-kb deletion (PWS-ICdel)

paternally, but the PWS-ICHs/del mice still have a growth

deficiency [14,20]. Maternal inheritance of the PWS-IC D4.8

mutation rescues both lethality and growth retardation phenotypes

in PWS mouse models. The lethality and growth retardation

phenotypes seem to correlate with the dual role of the PWS-IC as

the Snrpn promoter and as the IC regulator for imprinted genes at

the PWS/AS domain. Mouse models of PWS have failure to thrive

which results in postnatal lethality and growth retardation.

Maternal expression of the Snrpn sense/Ube3a antisense transcripts

from the inserted human SNRPN promoter complements one

failure to thrive locus to rescue lethality, but is not able to

complement a second failure to thrive locus which contributes to a

growth retardation phenotype [14]. In our mouse model, maternal

inheritance of the PWS-IC D4.8 mutation perturbs the IC

function of the maternal imprint at the PWS/AS region, and

thereby activates the paternally expressed imprinted genes spread

over the PWS/AS domain, which could complement all of the

failure to thrive loci, resulting in rescues of both lethality and

growth retardation phenotypes in PWS mouse models. Further-

more, maternal inheritance of the PWS-IC D4.8 mutation only

caused a mild reduction of Ube3a expression (Figure 8A, d),

whereas maternal inheritance of the PWS-ICHs resulted in severely

decreased expression of Ube3a (Figure 8A, f), leading to AS

phenotypes [14].

On the paternal wild-type chromosome, the Snrpn and Ndn

promoters are unmethylated and the paternally expressed

imprinted genes are fully activated (Figure 8A, a). When paternal

inheritance of the D4.8 mutation deletes the Snrpn exon 1, the Snrpn

sense/Ube3a antisense partially transcribes from the upstream

exons (Figure 8A, b). Although mice with paternal inheritance of

the D4.8 mutation expressed relatively similar levels of the Snrpn,

Snord116, and Snord115 transcripts as mice with maternal

inheritance of the D4.8 mutation (Figure 8A, b and d), different

phenotypic effects of the D4.8 mutation were found depending on

the origin of inheritance: paternal transmission of the D4.8

mutation caused PWS phenotypes showing postnatal lethality and

growth retardation [6]; maternal inheritance of the D4.8 mutation

is able to complement postnatal lethality and growth retardation

phenotypes in the PWS mouse models. These results raise a

possibility that gene(s) other than Snord116, and Snord115, and

Snrpn are also involved in these PWS phenotypes, although

deficiency of SNORD116 in human or Snord116 in mice has been

demonstrated to contribute to PWS pathogenesis [9,10,11,12,13].

This hypothesis is also supported by analyses of several mouse

models for PWS [2,15]. We noticed that the above parent-of-

origin specific effects of the D4.8 mutation appeared to correlate

with the levels of the Ndn transcripts, in the condition with Snrpn,

Snord116, and Snord115 expressed only from the upstream

alternative Snrpn promoters. Specifically, the m+/pD4.8 mice

showed partial expression of Ndn with 50% lethality and growth

retardation [6], whereas the mD4.8/pDS-U mice could express

normal or increased levels of total Ndn transcripts and appeared

Figure 6. ChIP-qPCR analyses for H3K4me3, H3Ac, and H3K4me3 at Snrpn and Ndn. (A) Schematic diagram of the Snrpn promoter. Gene
structure is shown at the top, where the white box represents the Snrpn exon 1 with the +1 as the major transcriptional start site. The region deleted
in the D4.8 mutation started from 22,702 is indicated as a gray line. A primer pair (half-arrows) was used for qPCR to amplify the Snrpn promoter
from 22,919 to 22,705 right upstream of the D4.8 region (black box). This qPCR region includes the Snrpn peak 2 region shown in Figure 5B. (B)
Schematic diagram of Ndn. The gene structure is shown at the top, where the white box represents the Ndn exon with the +1 as the transcriptional
start site. The region deleted in the DNdn mutation started from +228 is indicated (gray line). A primer pair (half-arrows) was used for qPCR to amplify
the region from +773 to +976 (black line). This qPCR region includes the Ndn peak 1 region shown in Figure 5C. (C–E) Quantification of H3K4me3 at
Snrpn (C) and Ndn (D, E) in the wild-type m+p+ mice (C–E), the mD4.8p+ mice (C, D), the m+pD4.8 mice(C, D), the m+pDNdn mice (E), and the mD4.8pDNdn

mice (E). (F–H) Quantification of H3Ac at Snrpn (F) and Ndn (G, H) in the wild-type m+p+ mice (F–H), the mD4.8p+ mice (F, G), the m+pD4.8 mice (F, G),
the m+pDNdn mice (H), and the mD4.8pDNdn mice (H). (I–H) Quantification of H3K9me3 at Snrpn (I) and Ndn (J, K) in the wild-type m+p+ mice (I–H), the
mD4.8p+ mice (I, J), the m+pD4.8 mice(I, J), the m+pDNdn mice (K), and the mD4.8pDNdn mice (K). The level of ChIP was normalized against the level of
input in each sample. The normalized level of ChIP from the wild-type mouse was set as 1. m+p+, n = 6; m+pD4.8, n = 4; m+pD4.8, n = 4; m+pDNdn, n = 3;
mD4.8pDNdn, n = 3.
doi:10.1371/journal.pone.0034348.g006
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Figure 7. DNA methylation analyses at Ndn and Mkrn3. (A) Schematic diagram of Ndn. Gene structure is shown at the top, where the white box
represents the Ndn exon with the +1 as the transcriptional start site. A SacII site at +750 for Southern blot analysis in Figure S1 is indicated. Locations
of CpG dinucleotides are shown as vertical bars. The region deleted in the DNdn mutation started from +228 is indicated (gray line). Two primer pairs
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phenotypically normal; both m+/pD4.8 and mD4.8/pDS-U mice

could express similar levels of Snrpn, Snord116, and Snord115.

Although these results suggest that Ndn is also a potential candidate

gene responsible for the PWS phenotypes, it should be pointed out

that targeted deletions of Ndn in mice had reported contradictory

results, ranging from no to severe effects on lethality [29,37,38].

The reason for the differences is not clear, genetic backgrounds are

suspected to be a contributing factor. However, growth retarda-

tion has not been reported in surviving mice with Ndn deficiency

[29,37,38]. Loss of another gene or more than one gene regulated

by the maternal PWS-IC might contribute to the lethality and

growth retardation phenotype. Two mouse models with different

targeted mutations of Magel2 have been created. The first study

indicated reduced embryonic viability and postnatal growth

retardation from birth until weaning [39]. The second study

showed neonatal lethality (around 50%) and postnatal growth

retardation due to the suckling deficit [40].

The partial imprinting defect caused by maternal or paternal

inheritance of the PWS-IC D4.8 mutation indicates that one or

more elements outside the D4.8 region are additionally required

for full PWS-IC activity [6]. Recently, paternal transmission of a

deletion extended 1 kb further upstream of the D4.8 region results

in fully penetrant imprinting defects, suggesting that this 1-kb

interval contains functional elements that confer full PWS-IC

activity with the D4.8 region [25]. We found that maternal

inheritance of the D4.8 mutation obtained H3K4me3 enrichment

and reduced H3K9me3 located within this 1-kb region just

upstream of the D4.8 mutation. These epigenetic changes are

being studied further for their parent of origin and function as a

potential IC or promoter. If present only on the maternal allele, it

is possible that the maternal PWS-IC D4.8 mutation could activate

the remaining portion of the PWS-IC by creating an active

chromatin hub on the maternal chromosome. Thereby, partial

expression of the paternally expressed imprinted genes on the

maternal chromosome could be due to activation of this potential

IC element or be the direct effects of a partial loss of the PWS-IC

by the D4.8 mutation. On the other hand, when paternally

inheriting the D4.8 mutation, H3K4me3 enrichment is not present

at the PWS-IC, although the paternally expressed imprinted genes

are also partially expressed with the remaining portion of the

PWS-IC.

Together, our findings provide evidence for the first time that

the PWS-IC functions not only in paternal imprinting but also in

maternal imprinting at the PWS/AS domain in mice (Figure 8B).

The PWS-IC controls expression of imprinted genes accompanied

by parent-specific epigenetic modifications. On the paternal

chromosome, the PWS-IC positively regulates the paternally

expressed imprinted genes with the Snrpn and Ndn promoters are

unmethylated on the CpG islands and modified with active

chromatin marks H3K4me3 and H3Ac [41] (Figure 8B). On the

maternal chromosome, the PWS-IC represses expression of the

paternally expressed imprinted genes with the Snrpn and Ndn

promoters are methylated on the CpG islands and modified with a

repressive chromatin mark H3K9me3 (Figure 8B). Furthermore,

we demonstrated PWS phenotypic rescues by maternal inheri-

tance of the PWS-IC deletion, in contrast to paternal inheritance

of the PWS-IC deletion causing the PWS phenotypes. We

identified a previously unrecognized and important role of the

PWS-IC at the PWS/AS domain.

Materials and Methods

Ethics statement
All of the mice were bred and maintained according to a

protocol (protocol number: AN772) approved by the Baylor

College of Medicine Animal Care and Use Committee at the

institution’s specific pathogen-free mouse facility, which is

approved by the American Association for Accreditation of

Laboratory Animal Care and is operated in accordance with

current regulations and standards of the US Department of

Agriculture and the Department of Health and Human Services.

Mouse models
Mutant mice with a 4.8-kb deletion (D4.8) at Snrpn exon 1were

generated as described [6]. Mutant mice carrying a deletion from

Snrpn exon 2 to Ube3a (DS-U) were previously described [28].

Mutant mice with a deletion at Ndn (DNdn) were described [29].

Mice with the D4.8 mutation and mice with the DS-U mutation

are maintained on a C57BL6/J genetic background. Mice with the

DNdn mutation are maintained on a hybrid C57BL6/J and 129/

SvEv genetic background.

RT-PCR analysis
Total RNA was purified from mouse whole brain dissected from

pups at day 1 of age using an RNeasy plus kit (Qiagen, Hilden,

Germany). 2 mg of DNase I-treated total RNA was used for

reverse transcription to synthesize the first strand cDNA by the

Superscript III First-strand synthesis system (Invitrogen, Carlsbad,

CA). Quantitative RT-PCR analysis was performed using Light-

Cycler Fast-Start DNA Master SYBR Green I (Roche). PCR

conditions and primer sequences are listed in Table S1

[6,13,26,42]. Hprt and Gapdh transcripts were amplified as controls

for gene expression. For quantification experiments, we used a

least 3 sets of mice with every genotypes. In each group of mice

with different genotypes, the levels of gene expression were

normalized against the levels of an endogenous control in each

(half-arrows) were used for nested PCR to amplify the bisulfite-treated DNA at the Ndn promoter from 269 to +470 (black line). A third primer pair
(half-arrows) was used for the MeDIP-qPCR analysis to amplify the region from +237 to +470 (black line). (B) Sodium bisulfite sequencing analyses of
methylation status of 42 CpG dinucleotides across the Ndn promoter (269 to +470) in the wild-type m+p+ mice, the mD4.8p+ mice, the m+pDNdn mice,
and the mD4.8pDNdn mice. Each line represents an individual clone with open and closed circles corresponding to unmethylated and methylated CpGs,
respectively. (C) MeDIP-qPCR analyses of DNA methylation at the Ndn promoter (+237 to +470) in the wild-type m+p+ mice, the mD4.8p+ mice, and the
m+pD4.8 mice (left), as well as in the m+pDNdn mice and the mD4.8pDNdn mice (right). The level of MeDIP DNA was normalized against the level of input
DNA in each sample. m+p+, n = 3; m+pD4.8, n = 3; m+pD4.8, n = 3; m+pDNdn, n = 3; mD4.8pDNdn, n = 3. (D) Schematic diagram of the Mkrn3 promoter. Gene
structure is shown at the top, where the white box represents the partial Mkrn3 exon with the +1 as the transcriptional start site. A NotI site at +139 is
indicated. Locations of CpG dinucleotides are shown as vertical bars. Two primer pairs (half-arrows) were used for nested PCR to amplify the bisulfite-
treated DNA at the Mkrn3 promoter from 2469 to +91 (black line). A third primer pair (half-arrows) was used for the MeDIP-qPCR analysis to amplify
the region from +21 to +324 (black line). (E) Sodium bisulfite sequencing analyses of methylation status of 22 CpG dinucleotides across the Mkrn3
promoter (2469 to +91) in the wild-type m+p+ mice and the mD4.8p+ mice. Each line represents an individual clone with open and closed circles
corresponding to unmethylated and methylated CpGs, respectively. (F) MeDIP-qPCR analyses of DNA methylation at the Mkrn3 promoter (+21 to
+324) in the wild-type m+p+ mice, the mD4.8p+ mice, and the m+pD4.8 mice. The level of MeDIP DNA was normalized against the level of input DNA in
each sample. The normalized level of MeDIP DNA from the wild-type mouse was set as 1. m+p+, n = 3; m+pD4.8, n = 3; m+pD4.8, n = 3.
doi:10.1371/journal.pone.0034348.g007
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sample. In each set of experiments, the normalized level of gene

expression from the wild-type mouse was always set as 1.

Western blot analysis
Mouse whole brain was dissected from pups at day 1 of age.

Brain samples were homogenized and lysed in NP40/SDS buffer

{1% Nonidet P-40, 0.01% SDS, 0.1 M Tris-HCl, pH 7.2, and

complete Protease Inhibitor Cocktail Tablet (Roche Applied

Sciences, Indianapolis IN)}. Sixty micrograms of mouse brain

protein were used for electrophoresis on 10% Tris-Cl ready gels

(Bio-Rad, Hercules CA). The proteins were transferred to

nitrocellulose membrane (Bio-Rad). The membranes were then

incubated with the appropriate antibodies as follows: rabbit anti-

human E6-AP was diluted 1:1000 (A300-352A; Bethyl Labs,

Montgomery TX) or goat anti-human actin IgG was diluted 1:500

(ac-1616 Santa-Cruz Biotechnology, Santa Cruz CA). The

membranes were then incubated with either goat anti-rabbit

IgG horseradish peroxidase (HRP) or donkey anti-goat HRP (ac-

2004 or ac-2020, respectively, Santa Cruz). The signals of western

blotting were detected by enhanced chemiluminesence (ECL, GE

healthcare) exposed to X-ray films. For quantification experi-

ments, the X-ray films were scanned and the intensity of the

signals was quantified by densitometry. We used a least 3 sets of

mice with every genotypes. In each group of mice from different

genotypes, the levels of E6-AP were normalized against the levels

of actin in each sample. In each set of experiments, the normalized

level of E6-AP from the wild-type mouse was always set as 1.

Chromatin immunoprecipitation (ChIP)
For ChIP-on-chip assays, mouse whole brain dissected from

pups at day 1 of age was used for MNase chromatin

immunoprecipitation assay as described [43]. Brain samples were

homogenized in Douncing buffer {10 mM Tris-Cl at pH 7.5,

4 mM MgCl2, 2 mM CaCl2, and complete Protease Inhibitor

Cocktail Tablet (Roche)}, treated with Micrococcal nuclease

(0.006 unit/ml), and then lysed with hypotonic solution {0.1 M

DTT, 0.1 M EDTA, 0.01 M PMSF, 0.1 M benzamidine, and

complete Protease Inhibitor Cocktail Tablet (Roche)}. For

chromatin modification analysis, chromatin was extracted in

incubation buffer {0.1 M EDTA at pH 8.0, 0.1 M Tris-Cl, 0.1 M

NaCl, and complete Protease Inhibitor Cocktail Tablet (Roche)},

and was immunoprecipitated with anti-trimethyl H3K4 antibodies

(Abcam, clone ID: ab8580).

For ChIP-qPCR analyses, mouse whole brain dissected from

pups at day 1 of age was used for ChIP assays as described by

Millipore/Upstate Biotechnology (available at http://www.

millipore.com). For chromatin modification analysis, chromatin

extracted from mouse brain was immunoprecipitated with anti-

trimethyl H3K4 antibodies (Abcam, clone ID: ab8580), anti-acetyl

Histone 3 (Millipore/Upstate, catalog #: 06-599), or anti-

trimethyl H3K9me3 (Millipore/Upstate, clone ID: 6F12-H4).

Then, qPCR analyses were performed using the primer sets to

amplify co-precipitated DNA from Snrpn and Ndn. The primers

used are listed in Table S1.

Mouse genomic tiling array
We designed a custom mouse genomic tiling array using the

Agilent E-array platform. The array included 44,000 oligonucle-

otides covering sequences of the mouse imprinted gene clusters

from ATP10a to Peg12 at the PWS/AS region (Chr7: 64,846,543–

69,740,076). DNA products from chromatin immunoprecipitation

were labeled and applied to the genomic tiling arrays as described

by the protocol of Agilent Technologies (available at http://www.

agilent.com).

Sodium bisulfite sequencing analysis
Genomic DNA was purified from mouse brain dissected from

pups at day 1 of age using the DNeasy blood & Tissue Kit

(Qiagen, Hilden, Germany). Bisulfite treatment of genomic DNA

was carried out using the EZ DNA methylation kit (ZYMO

Research, Irvin, CA) as described (available at http://www.

zymoresearch.com). From bisulfite-treated DNA, the CpG-rich

regions of Ndn and Mkrn3 were amplified by nested PCR with

primer sets listed in Table S1. For the Ndn CpG region, a 700-bp

first-round PCR product was amplified with the forward primer

NEC43F [44] and the reverse primer Ndn-bis1R. Then, a 628-bp

second-round PCR product was amplified with the forward

primer Ndn-bis2F and the reverse primer Ndn-bis2R. For the

Mkrn3 CpG region, a 625-bp first-round PCR product was

amplified with the forward primer Mkrn3-bis1F and the reverse

primer W28 [27]. Then, a 606-bp second-round PCR product was

amplified with the forward primer Mkrn3-bis2F and the reverse

primer Mkrn3-bis2R. Nested PCR reactions were performed with

ZymoTaq DNA polymerase (ZYMO Research) with first-round

PCR as follows: 10 min at 94uC; 1 min at 94uC, 2 min at 58uC,

and 2 min at 72uC cycled 5 times; 45 s at 94uC, 1 min at 58uC,

and 1 min at 72uC cycled 35 times; 10 min at 72uC, and second-

round PCR as follows: 10 min at 94uC; 45 s at 94uC, 1 min at

58uC, and 1 min at 72uC cycled 35 times; 10 min at 72uC. PCR

products from two independent bisulfite conversion reactions were

Figure 8. Schematic representation of genetic architecture at the PWS/AS domain. (A) Gene expression and DNA methylation associated
with the D4.8 mutation, the AS-ICan mutation, or the PWS-ICHs mutation were shown. On the paternal wild-type chromosome, the Snrpn and Ndn
promoters are unmethylated and the paternally expressed imprinted genes are activated (a). When the PWS-IC D4.8 mutation deletes the CpG island
at the Snrpn promoter on the paternal chromosome, the Snrpn sense/Ube3a antisense is transcribed only from the upstream exons, but is not
transcribed from the major promoter Snrpn exon 1, resulting in partial activation of Ube3a. The Ndn promoter was partially methylated with
decreased gene expression (b). On the maternal wild-type chromosome, silencing of Ndn and Snrpn is associated with DNA methylation at their
promoters. Ube3a is activated (c). When the PWS-IC D4.8 mutation deletes the CpG island at the Snrpn promoter on the maternal chromosome, the
Snrpn promoter at the upstream exons is activated and transcribes the Snrpn sense/Ube3a antisense, resulting in partial reduction of Ube3a
expression. The Ndn promoter was partially activated with decreased DNA methylation (d). Maternal inheritance of an insertion/duplication mutation
13 kb upstream of Snrpn exon 1 (AS-ICan) causes loss of Snrpn methylation, decreased Ndn methylation, activation of the maternally repressed genes,
and silencing of Ube3a due to expression of the maternal copy of the Snrpn sense/Ube3a antisense (e). Maternal transmission of a targeted
replacement of mouse PWS-IC with human PWS-IC (PWS-ICHs) expressed the Snrpn sense/Ube3a antisense transcripts from the inserted human SNRPN
promoter, resulting in silencing of Ube3a. The PWS-ICHs does not affect any other paternally expressed imprinted transcripts on the maternal
chromosome (f). (B) A model on how PWS-IC controls both paternal and maternal imprint at the PWS/AS domain. On the paternal chromosome, the
PWS-IC functions as the major promoter for the Snrpn sense/Ube3a antisense transcripts. The paternal PWS-IC also acts at long distances to activate
the Snrpn upstream exons and Ndn gene. The active Snrpn and Ndn promoters are unmethylated on the CpG islands and modified with H3K4me3
and H3Ac. On the other hand, the maternal PWS-IC acts in cis to silence the paternally expressed imprinted genes with the Snrpn and Ndn promoters
methylated on the CpG islands and modified with H3K9me3, a mark of a repressive chromatin state. The maternally expressed imprinted genes
Ube3a is expressed due to lack of the Snrpn sense/Ube3a antisense transcripts on the maternal chromosome.
doi:10.1371/journal.pone.0034348.g008
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cloned into the pGEM-Teasy vector (Promega Corp.). DNA

sequencing was performed using forward and reverse primers T7

and SP6 (MCLAB, South San Francisco, CA).

Methylated DNA immunoprecipitation (MeDIP)
Genomic DNA was purified from mouse brain dissected from

pups at day 1 of age using the DNeasy blood & Tissue Kit

(Qiagen, Hilden, Germany). MeDIP assays were performed as

described [45]. Briefly, 5 mg of genomic DNA in MeDIP buffer

(10 mM sodium phosphate at pH 7.0, 140 mM NaCl, 0.05%

Triton X-100) was sonicated to produce random fragments

ranging in size from 300 bp to 1,000 bp. The DNA was

immunoprecipitated with antibody against 5-methylcytidine

(Eurogentec, Belgium, clone ID: 33D3) at 4uC for overnight and

washed with MeDIP buffer three times. The precipitated DNA

was treated with proteinase K at 50uC for 4 h and recovered by

QIAprep Spin Miniprep kit (Qiagen, Hilden, Germany). Then,

qPCR analyses were performed to amplify the precipitated DNA

from Ndn and Mkrn3. The primers used are listed in Table S1.

Supporting Information

Figure S1 Expression analyses of Snrpn, Snrod116, and
Snord115 in the mD4.8p+ mice. (A–D) The Snrpn u1-ex3 (A),

Snrpn exon 7 (B), Snrod116 (C), and Snord115 (D) transcripts were

analyzed by qRT-PCR. Total RNA was isolated from brains of

wild-type mice (a, m+p+) (n = 4) and mice inheriting the D4.8

mutation maternally (b, mD4.8p+) (n = 4). For qRT-PCR, the levels

of gene expression from wild-type mice were set as 1. (E)

Schematic representation of the mouse PWS/AS domain (top) and

summary of gene expression in the m+p+ and mD4.8p+ mice

(bottom, a and b). The Snrpn sense/Ube3a antisense transcripts

initiated from Snrpn exon 1 with the major promoter activity and

from Snrpn upstream exons with weaker promoter activity are

marked as bold and thin arrows, respectively. SnoRNAs are

encoded within these large Snrpn sense/Ube3a antisense transcripts

derived from both Snrpn major and upstream exon promoters.

Snord116 and Snord115 are multiple copy gene clusters. The

centromeric (cen) and the telomeric (tel) positions are indicated.

Paternally and maternally expressed genes are marked as blue and

red boxes, respectively. D4.8 indicates a 4.8-kb deletion at Snrpn

exon 1. The levels of the Snrpn u1-ex3, Snrpn exon 7, Snrod116, and

Snord115 transcripts from wild-type mice were set as 100%. Mat,

maternal chromosome; Pat, paternal chromosome.

(TIF)

Figure S2 Methylation analysis of Ndn in mice carrying
the D4.8 deletion. Southern blotting was performed to analyze

the methylation patterns of the Ndn CpG island in mice with

paternal inheritance of the D4.8 deletion (m+pD4.8), mice with

maternal inheritance of the D4.8 deletion (mD4.8p+), mice with the

D4.8 deletion from both parents (mD4.8pD4.8), and wild type mice

(m+p+). Genomic DNA isolated from brains was digested with

HindIII (H) alone or in combination with SacII (SH), and

hybridized with a probe from the Ndn 59 flanking region.

Fragment sizes: me, 3.4 kb; unme, 1.9 kb. me, methylated; unme,

unmethylated.

(TIF)

Table S1 Primer sequences and conditions for PCR.
(XLS)
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