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Development stage-specific proteomic
profiling uncovers small, lineage specific proteins
most abundant in the Aspergillus Fumigatus
conidial proteome
Moo-Jin Suh1†, Natalie D Fedorova1†, Steven E Cagas2, Susan Hastings3, Robert D Fleischmann1, Scott N Peterson1,
David S Perlin2, William C Nierman1, Rembert Pieper1* and Michelle Momany3

Abstract

Background: The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely
immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled
conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying
mechanisms of this process.

Results: To gain insights into early germination events and facilitate the identification of potential stage-specific
biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein
abundance changes during early fungal development. Four different stages were examined: dormant conidia,
isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae.
To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic
resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment
of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins
enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial
proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally
we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus,
the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.
W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes,
histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In
contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for
proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and
carbohydrate biosynthesis, and the tricarboxylic acid cycle.

Conclusions: The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by
small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction
during conidial germination, or survival in hostile environments.

Keywords: Mass spectrometry, LC-MS/MS, APEX, Shotgun proteomics, Aspergillus fumigatus, Germination, Spore,
Conidia, Fungi, Hypothetical proteins
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Background
Aspergillus fumigatus is the most common airborne
fungal pathogen, which can infect ever increasing
numbers of patients with lung disease, immune system
disorders or undergoing immunosuppression therapy [1].
In patients with asthma and cystic fibrosis, it can cause
allergic diseases like allergic bronchopulmonary aspergil-
losis. In immunosuppressed individuals such as leukemia
and bone marrow transplant patients, inhalation of A.
fumigatus conidia (asexual spores) can cause invasive
aspergillosis (IA), a life-threatening disease, which is dif-
ficult to diagnose and treat. If successful in reaching the
innate immune defense in the lungs, conidia germinate
into hyphae, long finger-like projections that invade host
tissues and blood vessels within days or even hours after
colonization. Despite the importance of the early
morphogenetic transition for initiation of infection, its
specific mechanisms are not all well-understood, which
hinders the development of better diagnostic and
therapeutic approaches to combat IA.
The availability of two sequenced A. fumigatus

genomes, AF293 and A1163 [2,3], have enabled high-
throughput transcriptomic and proteomic approaches
and, thus, greatly facilitated the pace of discovery of new
biomarkers and therapeutic targets for IA. Previous
proteomic studies have identified a number of proteins
involved in early stages of A. fumigatus development and
early interactions with the human host [4]. Traditionally
proteomic studies rely on gel-based separations such as
2-dimensional polyacrylamide gel electrophoresis (2-D
PAGE) followed by mass spectrometry (MS). The methods
helped to identify reactive oxygen detoxification enzymes,
pigment biosynthesis enzymes and other highly abundant
proteins in the A. fumigatus conidial proteome [5-8].
While 2D gel approaches can identify proteins in their

intact forms, they lack sufficient sensitivity and dynamic
range for protein quantification. Furthermore, 2D gels
regularly fail to resolve proteins with physicochemical
characteristics such as high hydrophobicity, extreme pI
and Mr values and covalent attachment to membranes
or cell walls [9]. As a result, little is known about
expression status and functional roles of such proteins.
Quantitative shotgun proteomics based on liquid
chromatography tandem MS (LC-MS/MS) holds promise
to more comprehensive proteome surveys, including
comparative analyses of proteins from different develop-
mental stages [10]. Recently, we (SC and DP) profiled A.
fumigatus early development proteome states using shot-
gun proteomics based on isobaric tagging of peptides
(iTRAQ), accompanied by a simultaneous transcriptome
analysis [11]. This approach resulted in identification of
231 proteins with high confidence. The current study
also aims to survey the A. fumigatus early developmental
proteome, although it is focused on earlier time points

and involves different growth conditions. Although the
hydrophobin RodA was among the most abundant pro-
teins, the attempt to enrich for cell wall-immobilized
proteins was apparently not successful. Using a shotgun
proteomics approach, 375 proteins were identified
including 207 proteins that have not been detected using
iTRAQ shotgun proteomics [11]. Additionally we found
28 dormant conidia-enriched proteins that have not been
previously detected in the A. fumigatus proteomes of
conidia or pre-septation hyphae.

Results and discussion
Selection of time points that represent distinct stages of
early fungal development for proteomics analysis
In most fungi, conidial dormancy is controlled by
exogenous factors such as the availability of moisture,
oxygen and nutrients [12]. It has been established that,
when inoculated to culture medium containing a
carbon source, A. fumigatus conidia synchronously break
dormancy and begin nuclear division and morphological
development. Nuclear division and morphological devel-
opment remain roughly synchronous for at least 12 h, a
time that encompasses the first several rounds of mitosis
and early developmental landmarks [13]. In this study,
we exploited this inherent synchrony to characterize the
A. fumigatus proteome during the early stages of fungal
development.
To select specific stages for proteomics analysis, A.

fumigatus conidia were inoculated in glucose complete
medium and sequential samples were examined micro-
scopically for developmental landmarks every 30 min. As
summarized in Figure 1, the conidium expands isotropic-
ally for 4 h at 37°C in complete medium. Most cells
polarize and send out the first germ tube between 5 and
6 h and continue to elongate becoming hyphae. The first
septum forms near the base of the hypha between 9 and
10 h, asymmetrically dividing the hypha into two com-
partments. At about the same time, the first branch
forms on the apical side of the septum. Hyphae continue
to elongate and branch and eventually form a mycelial
mat. Based on the microscopy data, four time points
were selected for proteomics analysis: dormant conidia
(0 h), isotropically expanding conidia (4 h), hyphae with
early germ tubes (6 h), and pre-septation hyphae (8 h).
Although A. fumigatus conidia were grown in vitro, we

believe that these four time points represent critical de-
velopmentally-matched stages of fungal growth in vivo.
Previous work has shown that the cell wall of A. fumiga-
tus is organized in domains that change during early
growth [14]. It is likely that some of this change is asso-
ciated with new proteins being added to the wall at dif-
ferent stages of development as well as by reorganization
and modification of proteins within the wall. Though the
timeline of A. fumigatus development within human
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hosts is not known, we can extrapolate from the in vitro
data cited above and in mouse model systems [15].

A. Fumigatus proteins expressed during early fungal
development
A. fumigatus proteins were extracted using a mild alkali
method. They were analyzed using LC-MS/MS followed
by a modified spectral counting technique, called APEX
[16]. Using this approach, we detected 570 unique pro-
teins which represented 5.6% of the predicted A. fumiga-
tus proteome. The estimated sequence coverage for
proteins ranged from 4% to 100%, and Mascot scores
ranged from 40 to 4,978. Theoretical isoelectric points
(pIs) varied between 3.8 and 11.8, and molecular masses
(Mr) between 6,287 and 234,143 Da. Experimentally
observed proteins were mapped against the theoretical
proteome in relation to Mr and pI (Additional file 1). Of
the observed proteins, 14.4% were acid (pI below 5) and
26.4% basic proteins (pI above 9). In addition, 27.5% of
the proteins had molecular masses of less than 20 kDa.
The hydrophobicity of the proteins was calculated using
the GRAVY index, an arbitrary threshold for high hydro-
phobicity, and only four proteins had values above 0.2.
These result imply that our extraction technique was
somewhat biased against highly hydrophobic proteins. In
Additional file 2, the proteins and all of the respective
identified tryptic peptides are listed. Due to quantitative
variability of spectral counting methods in the low

abundance range [17], only proteins with an APEX value
of 3,500 or higher in at least one time point were ana-
lyzed further (Additional file 3). This approach resulted
in the identification of 375 proteins including 189, 215,
215 and 230 proteins detected at the respective four time
points (0 h, 4 h, 6 h, and 8 h) (Table 1 and Figure 2).
While low abundance proteins are of interest, they are
notoriously difficult to quantify reliably with shotgun
proteomics approaches on most instrument platforms.
The newest LC-MS platforms, e.g. the LTQ Orbitrap
Velos, promise to eliminate these bottlenecks for prote-
ome-wide quantification [18,19].
About 83% of the 375 proteins analyzed had at least

one assigned Gene Ontology (GO) term from the
Biological Process, Molecular Function, and Cellular
Component ontologies (Figure 3 and Additional file 4
and Additional file 5). Most proteins were intracellular
including 75 mitochondrial, 92 cytoplasmic, 70 riboso-
mal, and 45 nuclear proteins. Only thirteen of the 375
proteins were previously associated with cell wall,
plasma membrane or extracellular regions based on their
glycosylphosphatidyl-inositol (GPI) anchor motif or
experimental evidence. The large fraction of intracellular
proteins was unexpected, since we applied a mild alkali
extraction method [20] that was previously shown to
release alkali-sensitive proteins covalently linked
to glucans in Candida albicans cell walls and also to
recover proteins released from lysed cells but retained in
the cell pellets in insoluble or cell surface-bound forms.
It remains to be shown that A. fumigatus immobilizes
proteins in its cell wall via glycan linkages. Despite the
apparent lack of enrichment for cell wall proteins, we
detected 18 out of 62 proteins previously associated with
the secreted A. fumigatus proteome [21] (Table 2). Not-
ably, fewer than 6% (22 proteins) detected in this study
had a predicted signal peptide or signal anchor sequence.
Also, only 20 (3%) putative integral membrane proteins
were identified; all present at very low levels. This was
less than expected based on the total number of putative
proteins in the A. fumigatus proteome [2,3], suggesting
that extraction of fungal membrane proteins for proteo-
mics analysis remains a difficult task.

Figure 1 A. fumigatus early development stages selected for
proteomic analysis. For the 0 h time point dormant conidia were
stained with Calcofluor and Hoechsts. For the 4, 6 and 9 h time
points, 3 x 106 spores were inoculated into 10 mL of GMM and
incubated at 37°C. The samples were fixed and stained with
Calcofluor and Hoechsts. Upper panel shows DIC image lower panel
shows stained florescent image. All pictures were taken at 100X
magnification. Scale bar = 3 μm.

Table 1 Proteins expressed during early development in
A. fumigatus

Time
points

Matched
peptides

Proteins
detected

FDR
(%)

Proteins with
APEX >3,500

Enriched
proteins

0-8 h n/a n/a n/a 143 38*

0 h 3148 325 2.19 189 52

4 h 2261 299 2.30 215 85

6 h 2657 319 1.17 215 127

8 h 3615 361 0.64 230 119

Total 11681 570 1.60 375 n/a

Table legend: *Constitutively expressed proteins at all four time points.

Suh et al. Proteome Science 2012, 10:30 Page 3 of 13
http://www.proteomesci.com/content/10/1/30



Most proteins were involved in translation, respiratory
metabolism, amino acid and carbohydrate biosynthesis, tri-
carboxylic acid cycle, and other housekeeping functions.
Five common allergens, Asp F3, F8, F9, F12 and F22, and
three adhesin-like proteins were detected. We also found
four known virulence factors including cell wall
organization protein Ecm33 (AFUA_4G06820), Mn super-
oxide dismutase SodB (AFUA_4G11580), homocitrate syn-
thase HcsA (AFUA_4G10460), and citrate synthase Cit1/
McsA (AFUA_6G03590). One protein, conidial pigment
biosynthesis scytalone dehydratase Arp1 (AFUA_2G17580),
was implicated in interactions with the host.
Comparisons with previous studies of the early A.

fumigatus proteome showed that different shotgun
approaches complement each other with respect to
protein identification (Table 2). We detected 14 out of 26
conidial surface associated proteins [5] and 28 out of 40
most abundant intracellular conidial proteins [6]

Figure 2 Venn diagram of proteins detected at 0 h, 4 h and 6 h
of fungal growth. Each circle represents the number of proteins
detected with APEX expression values above 3,500 at different time
points. The numbers of analyzed and detected proteins for each
time point are shown in Table 1.

Figure 3 Cellular localizations and molecular functions of proteins enriched during early fungal development. Gene Ontology (GO) Slim
terms were generated from general GO terms as described in Methods. (A) Cellular localizations; (B) Molecular functions.
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previously found by 2-D PAGE. Additionally, we found
55 out of 66 immuno-reactive cytosolic proteins
extracted from germinating conidia [8]. Our study also
identified 168 out of 231 proteins previously detected in
A. fumigatus during early development by iTRAQ [11].
Further comparison with the Cagas et al. study showed
that quantification of expression values using shotgun
proteomics methods continues to be a challenge (see
below). Some of these discrepancies can be explained by
different time points or score cutoffs used to define
differentially expressed genes and proteins, while others
may result from differences in the proteomics approaches
or growth media used.

Proteins expressed at all four stages during early fungal
development
Out of 375 proteins, 143 were expressed at all four time
points, while the remaining 232 were not detected at one
or more time points (Additional file 6). All but ten
proteins had an assigned GO biological function (Figure 3).
One third of the proteins were ribosomal components or
related proteins that function in translation. The rest had
an assigned role in oxidative phosphorylation, amino acid
biosynthesis, gluconeogenesis, and tricarboxylic acid cycle.
All 143 proteins have orthologs in other Aspergillus species,
and the majority of them are highly evolutionarily
conserved across a broad range of fungal species. All but
twenty proteins were encoded in central regions of chro-
mosomes (i.e. least 600 Kb from telomeres), which typically
are reserved for the most evolutionary conserved functions
such as genome replication, expression, and central metab-
olism. Most of the 143 proteins were detected in A. fumiga-
tus in earlier proteomics studies (Table 2). Thus, 70% of
them were previously identified using iTRAQ proteomics
[11].
Most proteins that were expressed at all four time

points showed a moderate increase in abundance at 4 h,
6 h and 8 h with respect to the 0 h time point. The
most abundant proteins detected at all four time
points included conidial hydrophobin Hyp1/RodA
(AFUA_5G09580), allergens Asp F3 (AFUA_6G02280),
Asp F8 (AFUA_2G10100) and Asp F22 (AFU

A_6G06770), and subunits of the translation elongation
factor. Out of 143 proteins, 38 were constitutively
expressed at all four time points. These were defined as
proteins with log2 ratios less than 1.5 (see Methods).
Four of these constitutively expressed proteins were
characterized as upexpressed in conidia using iTRAQ or
2-D PAGE approaches [6,11]. Thus, allergen Asp F22
(AFUA_6G06770), Hyp1/RodA (AFUA_5G09580),
malate dehydrogenase (AFUA_6G05210), and zinc-contain-
ing alcohol dehydrogenase (AFUA_4G08240) were previ-
ously characterized as conidia-enriched proteins in both of
these studies. In contrast, our analysis showed only a very
moderate decrease in their abundance levels at 4 h or at
later stages (Additional file 6). We limited the differential
expression analysis comparing developmental time points
to proteins that had at least 4 significant peptides from Pep-
tide/ProteinProphet analysis at a 5% false discovery rate set.

Dormant conidia enriched proteins (0 h)
To identify proteins enriched at 0 h in comparison to 4 h
in A. fumigatus, we analyzed all proteins expressed at 0 h
with an APEX score above 3,500. Using a cutoff of less
or equal than −1.5 for log2 expression ratios (4 h/0 h), 52
dormant conidia-enriched proteins were found. Most of
these proteins were not detected at 4 h, 6 h and 8 h
(Figure 4). Half of the conidia enriched proteins have no
assigned biological function (Figure 3 and Additional file
7), including 17 ‘hypothetical proteins’. The rest tend to
be involved in sporulation, response to oxidative and
hypoxic stress, cell wall biosynthesis, and secondary
metabolite biosynthesis. Only one third of the 0 h
enriched proteins have no homologs in other fungi
besides the two closest relatives of A. fumigatus: Aspergillus
clavatus and Neosartoria fischeri (Aspergillus fischerianus).
This is consistent with previous findings that most conidia
enriched transcripts have no assigned biological roles and
are lineage specific in other fungi (see [22] for
review). Interestingly, small proteins were significantly
over-represented in dormant conidia. Thus, the average M.
W. of these proteins was 26,294, which was almost half the
average M.W. of the proteins enriched at the 8 h time point
(44,256).

Table 2 Comparisons with other early development proteomics studies

Other studies Proteins enriched at specific time points in this study Time
point

Method used Reference

Proteins detected Total (375) 0-8 h (143) 0 h (52) 4 h (85) 6 h (127) 8 h (119)

25 14 9 4 6 0 1 0 h 2D-Gel Asif 2006

231 168 99 6 46 78 63 0-16 h MALDI-MS/iTRAQ Cagas 2011

57 37 23 2 15 15 13 8 h iTRAQ Cagas 2011

34 23 10 2 6 13 8 16 h iTRAQ Cagas 2011

61 42 30 1 14 23 16 4 h 2D-Gel Singh 2010

63 25 17 9 5 5 3 0 h 2D-Gel Teutschbein 2010

Table legend: proteins enriched with log2 ratios of expression values > 2.
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Out of 52 proteins, 28 have never been previously
identified as abundant or over-represented in A. fumiga-
tus dormant conidia [5,6,8,11]. Using the WoLF PSORT
software tool, only two functionally not characterized
proteins (AFUA_1G13670 and GPI-anchored protein
AFUA_4G09600) were predicted to localize extracellu-
larly (Additional file 7). The smallest and most abundant
protein detected at 0 h was a protein of unknown
function called Grg1 (AFUA_5G14210). Although Grg1
has not been identified in previous proteomics studies,
its transcripts have been detected in A. fumigatus conidia
[23] and shown to be up-regulated in conidia exposed to
neutrophils [24]. In A. nidulans, Grg1 transcripts are up-
regulated in mycelia exposed to light [25]. Its orthologs
in other fungi have been proposed to function as a devel-
opmentally regulated, general stress protein involved in
lifespan control [26,27].
Another interesting protein of unknown function

enriched at 0 h was ConJ (AFUA_6G03210). Although

ConJ’s biological role is unknown, its transcripts were
shown to be upregulated in the early A. fumigatus tran-
scriptome [11] and during initiation of murine infection
[15]. Its ortholog, CON-10, was associated with conidial
development in N. crassa. Transcripts of CON-10 were
shown to accumulate in vegetative mycelia upon blue
light exposure and during conidial development [28].
Both Grg1 and ConJ were computationally predicted to
have nuclear localization. Another 0 h-enriched protein
of note was the pigment biosynthesis scytalone dehydra-
tase Arp1 (AFUA_2G17580). Arp1 is encoded by the six-
gene pigment biosynthesis cluster, which also encodes
proteins that have been earlier associated with conidia.
The conidial pigment, melanin, has been shown to
contribute to fungal virulence in a murine model [29]
and to modulate the host cytokine response by masking
specific ligands on the A. fumigatus cell surface [30,31].
1,8-dihydroxynaphthalene-melanin was shown to inhibit
phagolysosomal acidification [32].

Figure 4 Proteins of high abundance in A. fumigatus conidia. Abundances derived from APEX values ranging from o to 440,000 are displayed
in a heat map generated with the MeV analysis software. More protein information is provided in Additional file 7 where proteins are listed in the
same order.
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A few heat shock proteins and other chaperons
involved in maturation of protein complexes were also
upexpressed in the A. fumigatus dormant conidia. Many
of these proteins have never been previously associated
with A. fumigatus spores including heat shock protein
Scf1/Awh11 (AFUA_1G17370), nascent polypeptide-
associated complex subunit Egd2 (AFUA_6G03820),
calnexin ClxA (AFUA_4G12850), and Hsp70 chaperone
BipA (AFUA_2G04620). The exact biological role of Scf1
is unknown. It is a possible target of transcription factor
CrzA, which is a downstream effector of the calcineurin
signaling pathway and regulates conidial germination,
hyphal growth, and pathogenesis in A. fumigatus [33,34].
In A. nidulans, Scf1 transcription is repressed by StuA,
which also regulates multicellular complexity during
asexual reproduction, ascosporogenesis and multicellular
development during sexual reproduction [35]. Scf1 also
has a S. cerevisiae ortholog, HSP12, which is a plasma
membrane protein involved in maintenance of mem-
brane organization under stress and in response to heat
shock, oxidative stress, and osmotic stress [36].
Similarly, chaperons ClxA and BipA are involved in

unfolded protein response and possibly ER stress in fungi.
In filamentous fungi, calnexin is involved in N-glycan-
dependent quality control of folding of cell-wall-targeted
glycoproteins [37,38]. Glycosylation is a conserved posttran-
slational modification that is essential for cell wall function
[39]. A recent 2-D PAGE study showed that overexpression
of calnexin and a putative HSP70 chaperone is activated by
the deletion of the cwh41 gene encoding glucosidase I in A.
fumigatus, which also leads to ER stress and possibly
activates the ER-associated degradation [40].
Among other unusual findings was the detection of a

putative transcription factor, HapB (AFUA_2G14720)
and histones H3 and H4.1 (AFUA_1G13780 and
AFUA_1G13790). Orthologs of HapB have been shown
to function in regulation of carbohydrate metabolism in
A. nidulans [41] and sporulation in yeast [42], and the
subunit HapE of the CCAAT-binding complex was
previously identified in dormant conidia [6]). This
complex was shown to be a key regulator of redox
homeostasis in A. nidulans [43]. Histones H3 and H4.1
have been implicated in sporulation in S. cerevisiae [44].
In addition to 28 novel conidia enriched proteins, 24 pro-

teins including known virulence factors were discovered in
previous proteomics studies (Table 2) [5,6,8,11]. Nine of the
0 h-enriched A. fumigatus proteins were identified as over-
expressed in dormant conidia vs. mycelium by Teutschbein
and colleagues using 2-D PAGE [6]. Among these were Mn
superoxide dismutase SodB (AFUA_4G11580) and endo-
peptidase Pep2 (AFUA_3G11400), two conidial pigment
biosynthesis proteins, Ayg1 and Arp2 (AFUA_2G17550
and AFUA_2G17560), a putative methyltransferase
(AFUA_8G00550), and 2-methylcitrate synthase McsA

(AFUA_6G03590). SodB, also known as allergen Asp F6,
was also detected in the secreted A. fumigatus proteome
[21]. SodB is considered a putative virulence factor, because
it detoxifies superoxide anions and its transcripts are up-
regulated in conidia exposed to neutrophils and by the oxi-
dative agent menadione [24]. However, a triple deletion
mutant (sod1, sod2, sod3) did not show attenuation in viru-
lence[45]. Endopeptidase Pep2 is a conidia surface-asso-
ciated protein [5], whose transcripts are up-regulated in
conidia exposed to neutrophils [5,6,24,46]. Alb1, not identi-
fied in this study, and McsA have been characterized puta-
tive virulence factors in A. fumigatus. The alb1 gene is also
involved in conidial morphology and resistance to oxidative
stress [47]. AFUA_8G00550 is encoded by a pseurotin A
biosynthesis cluster [48]. It is induced during hypoxia and
over-represented in conidial [6,49].
Additionally, three of 0 h-enriched proteins were previ-

ously identified as highly abundant in the conidial proteome
by the same authors [6]. The list includes a hypothetical
protein (AFUA_6G12000), an Asp hemolysin-like protein
(AFUA_4G02805), and mannitol-1-phosphate dehydrogen-
ase MpdA (AFUA_2G10660). AFUA_6G12000 is the sec-
ond most abundant protein at 0 h and is unique to A.
fumigatus and its close relative, N. fischeri. The functional
role of Asp hemolysin-like protein (AFUA_4G02805) is not
yet known. Its paralog, Asp hemolysin (AFUA_3G00590),
was recently identified as a major secreted protein
expressed in resting and germinating conidia and during hy-
phal development [21]. Both proteins belong to the protein
family of aegerolysins, which includes a large number of
bacterial and fungal proteins that function in sporulation
and development. MpdA protein is induced by heat shock
and reacts with rabbit immunosera exposed to A. fumigatus
germling hyphae [50]. In A. niger, the mpdA gene expres-
sion is increased in the sporulating mycelium [51,52]. This
indicates that mannitol biosynthesis may be developmen-
tally regulated in aspergilli. Mannitol itself has been shown
to play a key role in ensuring the stress tolerance of A. niger
conidiospores [52].

Expanding conidia-enriched proteins (4 h)
Out of 215 proteins detected at the 4 h time point, 85
were identified as up-expressed at 4 h in comparison
to 0 h in A. fumigatus conidia. Remarkably, 25 of
these proteins (29%) were not detected in dormant
conidia, while 44 (52%) were also up-expressed at 6 h
and 8 h in comparison to 0 h. This is consistent with
the view that the dramatic shift in protein expression
associated with conidial expansion happens between 0
h and 4 h time points. Most proteins (85%) had an
assigned GO biological function, with translation and
tricarboxylic acid cycle being the most common ones
(Additional file 8). Almost half of 4 h enriched pro-
teins (52 out of 85 proteins) were previously identified
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in the A. fumigatus conidial proteome [5,6,8,11]
(Table 2).
While the majority of 4 h enriched proteins were intra-

cellular, the list also includes five cell wall proteins such
as cell wall organization protein Ecm33
(AFUA_4G06820), which was earlier implicated in coni-
dial germination, antifungal drug resistance, and hyper-
virulence [53,54]. Four GPI-anchored proteins were also
identified including beta-1,3-endoglucanase EglC
(AFUA_3G00270), which has been implicated in cell wall
organization and biosynthesis [55]. EglC was also
detected in the A. fumigatus immunosecretome, secreted
proteome and in germinating conidia [8,21,56].
Among the most abundant proteins in expanding co-

nidia were allergens Asp F8/60 S ribosomal protein P2
(AFUA_2G10100) and Asp F3 (AFUA_6G02280), several
cytosolic ribosomal subunits, and the putative cell cycle
regulator Wos2 (AFUA_5G13920). A. fumigatus Wos2
has been shown to be recognized by immunosera from
rabbits exposed to conidia [50], while its orthologs function
in regulation of the cell cycle in A. niger and of telomerase
activity in yeast [57,58]. The predominance of known
allergens and other immunoreactive proteins in expanding
conidia is consistent with previous studies. This initial stage
of spore germination, also known as “swelling,” triggers the
recruitment of host inflammatory cells.
Another immunoreactive protein enriched at 4 h was

CipC (AFUA_5G09330), which was shown to react with
immunosera from rabbits exposed to A. fumigatus co-
nidia [50]. It has never before been associated with the
conidial proteome, but described a major hyphal-specific
protein [59]. Proteomic evidence indicated that CipC is a
secreted protein [5]. Its exact function is unknown, al-
though it was suggested that it is involved in competitive
interactions between bacteria and aspergilli. CipC was
associated with the hyphal morphotype that enables in-
vasive growth during infection. Proteome analysis of A.
nidulans identified its close homolog CipC (but not
AFUA_5G09330) as a protein associated with the re-
sponse to stress and the antibiotic concanamycin A [60].
Amino acid biosynthesis proteins were also abun-

dant at 4 h including homocitrate synthase HcsA
(AFUA_4G10460), which has been implicated in A.
fumigatus virulence and is considered a possible
antifungal drug target [61]. HcsA is also expressed at
6 h and 8 h. The protein is required for lysine biosyn-
thesis and has been shown to be induced by heat
shock [62]. This virulence factor has not been
associated previously with A. fumigatus conidial
proteome, however, its transcript is known to be
highly induced during conidial germination [12].
Among unusual findings was the discovery of regula-

tory protein suAprgA1 (AFUA_3G09030), which has not
been previously associated with conidia. Although its

exact function is unknown, it is a highly conserved pro-
tein with putative homologs in mammals, fungi and
protozoa. Its orthologs have been shown to function in
aerobic respiration in S. cerevisiae and in regulation of
penicillin biosynthesis in Aspergillus nidulans [63]. In
contrast, its homolog regulates the RNA-binding activity
of a protein that guides RNAs during the mitochondrial
RNA editing process in Trypanosoma brucei [64].
Additionally, some proteins were detected at 0 h and 4

h time points such as cell wall integrity signaling protein
Pil1 (AFUA_6G07520). It is the only one signaling pro-
tein detected in the early A. fumigatus proteome. Its
ortholog has been detected in the A. nidulans proteome
at 0 h and 1 h time points [65]. It localized to the coni-
dial periphery and in punctate structures in mycelia
[65,66]. A. fumigatus Pil1 is similar to yeast sphingolipid
long chain base-responsive protein PIL1, which is a
primary component of large immobile cell cortex struc-
tures associated with endocytosis. PIL1 null mutants
show activation of Pkc1p/Ypk1p stress resistance
pathways in S. cerevisiae [67].

Early germ tube-enriched proteins (6 h)
Out of 215 proteins found in hyphae with early germ
tubes, 127 (59%) were identified as over-expressed in
comparison to dormant conidia in A. fumigatus. The vast
majority (94%) of 6 h enriched proteins had an assigned
GO biological function (Additional file 9). Most common
functions included translation, ATP synthesis coupled
electron transport, amino acid biosynthesis, gluconeo-
genesis, and tricarboxylic acid cycle. Almost half were
ribosomal components and proteins that function in
translation. The proteins appear to be evolutionarily con-
served across a broad range of fungal species as well as
in other eukaryotes including humans. All but four
proteins of the 127 proteins (97%) were encoded by genes
located in central regions of chromosomes (≫300 Kb from
telomeres), which on average harbor only 85% of A. fumi-
gatus genes. Only two proteins were annotated as
“hypotheticals”, because they shared no sequence similarity
with any characterized protein or domain in public
databases. Both proteins were only detected at 6 h.
Eighty five of the 127 proteins (67%) were also

enriched in early germ tubes in comparison to expanding
conidia, reflecting continuous exponential increase in the
biosynthetic capacity during these three developmental
stages. The most abundant proteins among those were
translation elongation factor subunits, components of
the cytosolic ribosome, thiazole biosynthesis enzyme
ThiF (AFUA_6G08360), glyceraldehyde 3-phosphate
dehydrogenase GpdA (AFUA_5G01970), and plasma
membrane H + −ATPase Pma1 (AFUA_3G07640). ThiF
has not been detected in the A. fumigatus proteome
prior to this study. The ThiF yeast ortholog, THI4, has
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been shown to catalyze formation of a thiazole inter-
mediate during thiamine biosynthesis and to be required
for mitochondrial genome stability in response to DNA
damaging agents [68]. GpdA has been shown to react
with immunosera from rabbits exposed to A. fumigatus
conidia [50].
Some of the 6 h enriched proteins may have important

roles in establishing mammalian infection. Thus homoci-
trate synthase HcsA (AFUA_4G10460) and superoxide
dismutase SodA (AFUA_5G09240), previously implicated
in the initiation of infection, are up-expressed at this
stage. HcsA has not been associated with A. fumigatus
conidia or germling hyphae in proteomics studies.
Furthermore, transcripts for six of these proteins were
up-regulated in A. fumigatus germlings during initiation
of murine infection [15]. The list includes ThiF, men-
tioned above, cell wall glucanase BtgE (AFUA_8G05610),
superoxide dismutase SodA (AFUA_5G09240), pyridox-
ine biosynthesis protein PyroA (AFUA_5G08090), and
pyruvate carboxylase (AFUA_4G07710). BtgE is a cova-
lently bound cell wall protein with a predicted role in
degradation of glucans.
In contrast to 0 h enriched proteins, there is a much

higher degree of correlation between 6 h enriched
proteins and the proteins identified during early develop-
mental stages in previous A. fumigatus proteomics
studies (Table 2). Thus, 78 out 127 (61%) the latter were
previously detected at 0 h, 4 h, 8 h and 16 h [30], includ-
ing 15 and 13 proteins up-expressed at 8 h and 16 h of
mycelial growth. Moreover, transcripts of 105 and 91
proteins (83% and 72%, respectively) were shown to be
up-regulated at 8 h and 16 h respectively. Also, 14 and
five of our germling hyphae-enriched proteins were
previously identified as highly abundant in conidia and
overrepresented in conidia in comparison to mycelia,
respectively [6].

Pre-septation hyphae-enriched proteins (8 h)
A total of 119 proteins were up-expressed at 8 h of fungal
growth in comparison to dormant conidia (Additional file
10). Of those, 103 (87%) had an assigned GO biological
function (Figure 3). At least, 26 proteins were involved in
translation either as ribosomal subunits or as components
of a translation elongation factor. Similar to 6 h enriched
proteins, most 8 h enriched proteins were evolutionary
conserved, and all but four were encoded by central
chromosomal regions. All but two of the 119 proteins had
orthologs in other aspergilli [3].
The list of the most abundant 8 h enriched proteins

included allergen Asp F8/60 S acidic ribosomal protein P2
(AFUA_2G10100), a protein of unknown function
(AFUA_1G06580), and a mitochondrial cytochrome c sub-
unit (AFUA_2G03010). More than half of the enriched
proteins were also overexpressed at 6 h and six proteins

showed a pattern of exponential increase from 0 h through
8 h of fungal growth. The latter included allergen Asp F8/
(AFUA_2G10100), two cell wall proteins (AFUA_4G08960
and AFUA_8G05610), nucleolar pre-rRNA processing
protein Nop58 (AFUA_3G13400) and a subunit of a
eukaryotic translation initiation factor (AFUA_4G03860).
One GPI-anchored protein (AFUA_8G05610) is a putative
adhesin, while the other (AFUA_3G00270) is cell wall glu-
canase BtgE. Notably, BtgE transcripts have been shown to
be up-regulated during initiation of murine infection by A.
fumigatus [15]. Additionally, six pre-septation hyphae-
enriched proteins were detected previously in the secreted
A. fumigatus proteome including Cu,Zn superoxide dis-
mutase SodA (AFUA_5G09240) and extracellular cell wall
glucanase Crf1/allergen Asp F9 (AFUA_1G16190). Similar
to BtgE, SodA was previously detected in conidia and its
transcripts were up-expressed in germlings during initi-
ation of murine infection in A. fumigatus [15].

Conclusions
The observed temporal expression patterns suggest that
germination of A. fumigatus conidia involves dramatic
changes in protein abundance levels. Some of the 375
identified proteins may represent novel antigens and
stage-specific biomarkers of colonization, infection or
treatment efficacy. Developmental stage candidate
biomarkers include the following proteins: (0 h) Grg1,
AFUA_6G12000; (4 h) Hsp90 binding co-chaperone
Wos2 and a CipC family protein; (6 h) 40 S ribosomal
protein S19 and the conserved protein AFUA_2G10580;
and (8 h) telomere and ribosome associated protein Stm1
and glycine-rich RNA-binding protein. Additionally, we
found that the A. fumigatus conidial proteome is
dominated by small, lineage-specific proteins that may
play key roles in host-pathogen interactions and in trans-
mitting environmental signals that control conidial
germination. Small proteins are more difficult to study
than larger proteins using traditional biochemical and
molecular methods. Our results show that shotgun
proteomics can facilitate functional characterization of
these interesting targets, which can be exploited to make
the fungus more vulnerable to the host immune system.

Methods
A. Fumigatus growth and harvest
3 x 108 per 100ml of A. fumigatus CEA10 conidia were
washed with H2O and inoculated into Glucose Minimal
Media and incubated at 37°C at 200 rpm for 4, 6 and 8 h.
For the 0 h time point, freshly harvested conidia were
used. Cell wall protein extraction was conducted using a
modified version of a previously described protocol
[20,69]. The cells were harvested using Corning 500 ml
bottle top filter and rinsed with cold sterile water and
then with 10 mM Tris–HCl, pH7.5.
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Protein digestion
The frozen conidia pellet was ground to a fine powder
using a mortar and pestle. Cells were re-suspended in 10
mM Tris–HCl, pH 7.5 (25 ul/mg) in the presence of a pro-
tease inhibitor cocktail (Roche, complete Mini EDTA-free
Protease inhibitor cocktail). Soluble proteins, likely to be
primarily of intracellular origin, were removed by washing
the insoluble fraction three times with 1M NaCl, centrifu-
ging at 300 rpm for 10 min at 4°C between each wash. The
insoluble fraction was then twice extracted for 5 min at
100°C with SDS extraction buffer (50mM Tris–HCl, pH
7.8, 2%SDS, 100mM NaEDTA, and 40mM β-mercap-
toethanol). The SDS treated insoluble fraction was washed
three times with water and spun at 300 rpm for 5 min be-
tween each wash, followed by incubation with 30mM
NaOH at 4°C for 17 h with gentle shaking. The reaction
was stopped by addition of neutralizing amounts of acetic
acid. Overnight dialysis of the released proteins at 4°C was
carried out. The proteins were precipitated by adding 9
volumes of 100% methanol buffer (100% methanol, 50mM
Tris HCl, pH 7.8), incubating at 0°C for 2 h, and centrifu-
gation at 13,000 rpm for 10 min at 4°C. The pellet was
washed twice with 90% methanol buffer (90% methanol,
50mM Tris HCl pH 7.8) and air dried. The pellet was dis-
solved in 10mM Tris HCl pH 7.5. The protein concentra-
tion was determined according to the method of Bradford
using BIO-RAD protein assay (BIO-RAD Lab., U.K.) [70].
The ten analyzed samples contained between 35 and 70 μg
protein, suggesting that this extraction procedure did not
result in retention of large amounts of intracellular pro-
tein. They were processed using filter-aided sample prepar-
ation (FASP) and suitable for downstream mass
spectrometric analysis [71]. In this way, in-solution diges-
tion was carried out in the filter device, where denatured
proteins were digested under the condition of maintaining
the activity of the trypsin without a carboxyamidomethyla-
tion step to modify cysteine residues. The entire protein
digests checked in SDS-PAGE gels for completion of di-
gestion were analyzed by LC-MS/MS to identify A. fumiga-
tus proteins.

LC-MS/MS
LC-MS/MS analysis was performed with a LTQ ion trap
mass spectrometer (Thermo-Finnigan, San Jose, CA)
equipped with a Finnigan nESI source. An Agilent 1100
series solvent delivery system (Agilent, Palo Alto, CA)
was interfaced with the LTQ instrument to deliver sam-
ples to a peptide trapping cartridge (CapTrap, Michrom
BioResources, Auburn, CA), followed by a reversed-
phase column. Peptides were eluted from the C18

cartridge and separated on the BioBasic C18 column
(BioBasic C18, 75 μm× 10 cm, New Objective, Woburn,
MA) for 85min run [53 min binary gradient run from
97% solvent A (0.1% formic acid) to 80% solvent B (0.1%

formic acid, 90% AcCN) at a flow rate of 350 nl/min.]
Mass spectra were acquired in automated MS/MS mode,
with the top five parent ions selected for fragmentation
in scans of the m/z range 300–1,500 and with a dynamic
exclusion setting of 90 s, deselecting repeatedly observed
ions for MS/MS as previously provided [72].

MS data analysis
MS and MS/MS sequences obtained from LC-MS/MS
experiments were searched against the latest release of the
NCBI A. fumigatus proteome (WGS AAHF01000001-
AAHF01000019) using the search engine Mascot v. 2.3.2
(Matrix Science, London, UK). LTQ peak lists were cre-
ated with Mascot Daemon using the data import filter
lcq_dta.exe from XCaliber v.2.2 (Thermo electron), which
coverts binary.raw files into peak list.dta files. The data
were retrieved with search parameters set as follows: en-
zyme, trypsin; allowance of up to one missed cleavage pep-
tide; MS tolerance ±1.4 Da and MS/MS tolerance ± 0.5 Da;
no modification of cysteine and methionine oxidation
when appropriate with auto hits allowed only significant
hits to be reported. The protein identifications were
accepted as significant when a Mascot protein score >75
and at least one peptide e-value <0.01 were reported. To
accept a Mascot score between 40 and 75, a protein had to
be identified as least two times with at least two peptide e-
value <0.05 each. Using a randomized decoy database and
a default significance threshold of 0.05 in Mascot, the
false-positive rate for peptides identified by LC-MS/MS
was 1.6%. Following file conversion into the ‘mzXML’ for-
mat, MS data were re-scored using the algorithms Peptide-
Prophet™ and ProteinProphet™ [73]. The data is available in
the PRIDE database [74] (http://www.ebi.ac.uk/pride)
under accession numbers [19312–19315].

Calculation of protein abundance estimates using the
APEX method
The LC-MS/MS data from biological replicates (dupli-
cates for 4 h and 6 h time points; triplicates for 0 h and 8
h time points) were combined to calculate absolute
protein expression (APEX) values using a computation-
ally modified spectral counting approach developed by
Lu et al. [10] and converted into a software application
by Braisted et al. termed the APEX quantitative proteo-
mics tool v1.1 [16]. Briefly, the XML spectral data files
were converted into Peptide/Protein Prophet probabil-
ities, and Oi correction factors based on probability of
peptide detection determined to adjust the protein
quantities based on spectral counts. Default settings for
peptide physicochemical properties were used to deter-
mine Oi values. A normalization factor of 2.0 × 106 was
used to convert the APEX scores into estimates of pro-
tein molecules per cell. The protein FDR was set at 1%
to eliminate proteins identified at a confidence level
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lower than 99%. To apply a higher stringency level to the
evaluation of differential protein abundances comparing
the four time points, only proteins with the following fil-
ter criteria were included in the abundance analysis: (1) a
total significant peptide count of at least 4 according to
Mascot and APEX data and a significant unique peptide
count in Mascot of at least 2 or (2) an APEX scores
higher than 3,500. To identify differentially expressed
proteins, Log2 ratios were used to measure relative
changes in expression level at 4 h, 6 h and 8 h time
points with respect 0 h. To add another level of quantifi-
cation stringency, proteins were considered differentially
expressed if their APEX expression values were above
3,500 and their corresponding log2 ratios were greater
than 1.5 or less than −1.5.

Prediction of signal peptide, subcellular localization and
gene ontology terms
For the prediction of N-terminal signal peptides and
transmembrane regions, acquired amino acid sequences
of all proteins were searched with the algorithms SignalP
and TMHMM (www.cbs.dtu.dk). For subcellular
locations, a WoLF PSORT software (freely available at
wolfpsort.org) was used to predict the subcellular
localization. Gene Ontology (GO) terms were downloaded
from AspGD (http://www.aspergillusgenome.org) [75]. The
GO Slimmer tool (http://amigo.geneontology.org) was used
to obtain higher level broader parent terms GO molecular
function and cellular localization predictions also known as
GO Slim terms.
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