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Abstract

The mucosal cytokine response of healthy humans to parasitic helminths has never been reported. We investigated the
systemic and mucosal cytokine responses to hookworm infection in experimentally infected, previously hookworm naive
individuals from non-endemic areas. We collected both peripheral blood and duodenal biopsies to assess the systemic
immune response, as well as the response at the site of adult worm establishment. Our results show that experimental
hookworm infection leads to a strong systemic and mucosal Th2 (IL-4, IL-5, IL-9 and IL-13) and regulatory (IL-10 and TGF-b)
response, with some evidence of a Th1 (IFN-c and IL-2) response. Despite upregulation after patency of both IL-15 and
ALDH1A2, a known Th17-inducing combination in inflammatory diseases, we saw no evidence of a Th17 (IL-17) response.
Moreover, we observed strong suppression of mucosal IL-23 and upregulation of IL-22 during established hookworm
infection, suggesting a potential mechanism by which Th17 responses are suppressed, and highlighting the potential that
hookworms and their secreted proteins offer as therapeutics for human inflammatory diseases.

Citation: Gaze S, McSorley HJ, Daveson J, Jones D, Bethony JM, et al. (2012) Characterising the Mucosal and Systemic Immune Responses to Experimental Human
Hookworm Infection. PLoS Pathog 8(2): e1002520. doi:10.1371/journal.ppat.1002520

Editor: Richard Karl Grencis, University of Manchester, United Kingdom

Received September 22, 2011; Accepted December 21, 2011; Published February 9, 2012

Copyright: � 2012 Gaze et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grants from the Broad Foundation and the National Health and Medical Research Council of Australia (NHMRC). AL is
supported by a senior research fellowship from NHMRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Alex.Loukas@jcu.edu.au

. These authors contributed equally to this work.

" These authors are joint senior authors on this work.

Introduction

The hookworms Necator americanus and Ancylostoma duodenale infect

an estimated 740 million people, mostly in tropical regions of the

world, causing significant burden of disease [1]. As for most

Neglected Tropical Diseases (NTDs), there is currently no

prophylactic or therapeutic vaccine against hookworm infection,

although clinical trials are underway on a number of promising

candidate antigens [2]. Despite efforts to eliminate this disease

from developing countries, experimentally-induced hookworm

infection offers potential as an anti-inflammatory therapy for

human autoimmune [3] and allergic [4,5] diseases. However,

despite their importance in regards to disease burden in resource

poor countries (especially in children and women of child bearing

years) and their potential as an anti-inflammatory therapy for use

in industrialized countries, little is known about the mucosal

immune responses of humans to hookworm, or indeed any other

gastrointestinal (g.i.) helminths parasites.

Unlike many other human g.i. helminths, despite a robust,

parasite-specific immune response, naturally acquired protection

against hookworm is only partially effective at best; indeed, in

endemic areas the oldest people often have the heaviest worm

burdens [6,7]. Nonetheless, previous studies on people naturally

infected with hookworm have identified associations between

reduced egg counts and Th2 responses. For example, IL-5

production correlates positively with resistance to reinfection after

anthelmintic drug cure [8], and levels of IgE reactive against

defined larval antigens are negatively associated with hookworm

egg counts [9].

A small number of experimental infections in hookworm naive,

healthy human volunteers have been conducted, with an exclusive

focus on the systemic immune response at both the humoral and

cellular levels [10–12], and gross observations of the gut via

capsule endoscopy [3]. These earlier observations described the

onset of eosinophilia, production of parasite specific IgG and IgE,

and secretion of both Th1 (IFN-c and TNF-a) and Th2 (IL-5 and

IL-13) cytokines. With the onset of patency, IL-10 was produced

and T cell proliferation was blunted and was not restored until

long after curative therapy [7,11].

Most of our understanding of mucosal immunity to g.i.

nematodes comes from studies in laboratory mice. Th2

cytokines are required for resistance to many g.i. helminths, as

seen in mice that are genetically deficient in Th2 cytokines and

associated signalling molecules [13,14]. In the draining lymph

node, Th2 cytokines are responsible for class-switching of B cells

to IgG1 and IgE, as well as recruiting and activating innate
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immune cells and blocking parasite effector molecules [15]. At

the site of adult worm residence in mice, the duodenum, Th2

cytokines are responsible for increased mucus and fluid

production in the gut and smooth muscle contractility, which

increases ejection of parasites [16,17]. They also lead to

recruitment, expansion and differentiation of innate immune

cells such as eosinophils, alternatively activated macrophages,

mast cells and basophils in the gut which can directly or

indirectly lead to ejection of parasites [15]. Thus differentiation

of Th2 cells and production of Th2 cytokines, both systemically

and in the mucosa, may be important for intestinal parasite

clearance in mice.

Th1 (and Th17) responses are also induced during some

helminth parasite infections. In the absence of a Th2 response,

or where Th1/Th17 responses have been artificially upregu-

lated, an uncontrolled Th1/Th17 response to schistosomes leads

to acute pathology and ultimately death in mice [18,19]. Thus, it

has been proposed that the Th2 response generated during

schistosomiasis may downregulate Th1/Th17 responses, leading

to suppression of immunopathology and survival of the host [15].

Suppression of Th17 responses by Th2 cytokines in the mucosa

has also been shown in mice infected with g.i. nematodes [20],

prompting the suggestion that nematodes may ameliorate

inflammatory gut diseases by dampening pro-inflammatory

Th17 responses.

We previously reported a study using human hookworm

infection to treat celiac disease [21]. Although no overt

suppression of clinical pathology was detected, suppression of

gluten-specific inflammatory Th1 and Th17 responses was seen

in the mucosa [22]. After established hookworm infection but

prior to challenge with gluten, samples were taken from control

and hookworm infected individuals, and here we prospectively

collected data on the hookworm-specific cytokine responses in

the peripheral circulation and, for the first time, the duodenal

mucosa, of hookworm naive individuals before and after

controlled experimental infection with N. americanus. This is

the first description of the mucosal immune response of humans

to hookworms; indeed, other than a case study where an

individual patient with active ulcerative colitis was treated with

whipworm and the mucosal immune response was assessed

[23], this is the first report of the mucosal immune response in

healthy volunteers in a clinical trial to experimental infection

with helminths, and provides valuable information to support

the development of both vaccines against hookworm infection

and hookworm-derived peptidic therapies for inflammatory

diseases.

Methods and Materials

Ethics statement
The Princess Alexandra Hospital, Queensland Institute of

Medical Research and Townsville Hospital Human Research

Ethics Committees approved the study. Written informed consent

was obtained from all subjects.

Clinical protocol
The methods used for our placebo-controlled, blinded clinical

trial using hookworm to treat celiac disease have been described

elsewhere [21]. Briefly, twenty confirmed HLA-DQ2+ celiac

disease sufferers on a long-term gluten-free diet (and therefore in

remission for celiac disease) were recruited, randomised into 2

groups and either infected with 10 infective larvae (L3) of N.

americanus (‘‘hookworm’’ group) or given a placebo of topical chilli

(Tabasco sauce) (‘‘control’’ group). Twelve weeks later, a booster

infection of 5 infective larvae (or a placebo infection) was

administered. At week 20 post-prime infection, all individuals

were given a gluten challenge consisting of four slices of white

bread per day for 5 days. This trial will herein be referred to as

‘‘Trial 1’’. Approximately 6 months after the end of Trial 1 (during

which all participants returned to a strict gluten-free diet), seven of

the ten control subjects (those who did not receive hookworm in

Trial 1) participated in a continuation trial: two could not

participate due to other commitments, and one could not

participate due to raised tissue transglutaminase antibodies. These

7 participants were infected with N. americanus, boosted and

challenged with gluten in an identical manner to that described for

Trial 1. This trial will herein be referred to as ‘‘Trial 2’’.

In both trials hookworm infection was confirmed in all subjects

by either fecal egg counts and/or identification of adult parasites

in the duodenum during endoscopy [21]. The structure of the

trials is summarised in Figure 1.

Peripheral blood mononuclear cell acquisition and
antigen restimulation

Peripheral blood mononuclear cells (PBMCs) were isolated from

blood drawn into heparinised tubes over a Ficoll-Paque Plus

gradient (GE Healthcare) as described in Figure 1. Cells were

cultured for 120 h at 37uC, 95% O2/5% CO2 at 2.56105 cells/

well in round-bottom 96-well plates in Tissue Culture Medium

(Med: RPMI 1640, 10% fetal bovine serum, 100 U/ml penicillin,

100 mg/ml streptomycin and 2 mM L-glutamine), in the absence

(‘‘Med’’) or presence of 10 mg/ml N. americanus excretory/secretory

proteins (NaES). NaES was prepared as previously described [24],

and was depleted of endotoxin using two rounds of phase

separation using Triton-X114 [25]. Endotoxin levels in NaES

after depletion were assessed using E-toxate (Sigma); levels were

below the detection limit of the assay (,0.05–0.1 EU/ml) for stock

solution of NaES at a concentration of 1.77 mg/ml. Cell-free

supernatants were collected and analysed using a Cytometric Bead

Array (CBA; BD Biosciences). Antigen-specific production of

cytokines was determined by subtraction of baseline cytokine levels

from unstimulated PBMCs (Med) from those stimulated with

NaES.

Biopsy culture
Duodenal biopsies were taken from week 20 post-prime

infection (prior to gluten challenge) in both groups from Trial 1,

and also from sites adjacent to (within 0.5 cm) a hookworm

attachment site where adult hookworms were found in the upper

duodenum (5 of 10 hookworm-infected individuals) by endoscopy

[21]. In Trial 2, biopsies were taken at week 0 (prior to infection)

Author Summary

Parasitic worms reside in the gastrointestinal tracts of
billions of humans in developing countries. Despite the
enormous disease burdens associated with these infec-
tions, very little is known about the immune response in
the gut tissue of humans to these parasites. We conducted
a clinical trial where we obtained gut biopsies from people
experimentally infected with hookworms and present here
the first report of the immune response by healthy human
gut tissue to a parasitic worm. We show that hookworms
suppress the production of pro-inflammatory molecules
and promote the expression of anti-inflammatory and
wound healing molecules in the gut, providing a potential
mechanism by which parasitic worms reside for long
periods in their human hosts and suppress inflammation
associated with auto-immune diseases.

Human Immune Responses to Hookworm Infection
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and at week 20 post-prime infection. Whole biopsies were placed

in wells of a 24-well plate containing 500 ml MED alone or MED

containing 10 mg/ml NaES, and cultured for 24 h in 95% O2/5%

CO2 at 37uC. Cell-free supernatants were taken and analysed

using a Cytometric Bead Array (BD Biosciences). Biopsies were

then placed into Trizol (Invitrogen) and RNA was purified

following the manufacturer’s protocols.

Quantitative real-time RT-PCR
For quantitative real-time RT-PCR (qPCR), RNA was

prepared from biopsies in Trial 2 by the phenol-chloroform

method (Trizol). mRNA quality was tested using a Bioanalyzer

(Agilent) or agarose gel electrophoresis prior the reverse-transcrip-

tion step. cDNA was prepared using Superscript III reverse

transcriptase (Invitrogen) according to the manufacturer’s proto-

col. PBMCs from a healthy donor were cultured for 24 h in 95%

O2/5% CO2 at 37uC with phytohemagglutinin-A (PHA) and used

to create standard curves and positive controls. Levels of

transcripts were normalised to the housekeeping gene b-actin

and are presented as arbitrary units. SyBr Green mastermix

(Qiagen) was used in a Rotor-Gene Q thermal cycler (Qiagen)

according the manufacturer’s protocol. Primers used for each gene

product are listed in Table S1.

Statistical analyses
All analyses were carried out using Prism 5.0 (Graphpad).

Paired data were compared by Wilcoxon matched-pairs signed

rank test; 3 or more sets of paired data were compared by the

Kruskal-Wallis non-parametric ANOVA. Unless otherwise indi-

cated, differences were not significantly different. N.S. = Not

Significant, * = p,0.05, ** = p,0.01, *** = p,0.001. All error

bars show the standard error of the mean.

Results

Th2 immune responses to hookworm infection
All volunteers infected with hookworm were confirmed to have

active infections using a combination of capsule endoscopy (to

visualize adult worms in the gut) and/or the presence of eggs in the

feces [21]. PBMCs from volunteers infected with 15 third-stage

larvae (L3) of N. americanus were restimulated with NaES and

showed increased antigen-specific production of the Th2 cytokines

IL-4, IL-5 and IL-13, compared with PBMCs from uninfected

controls, reaching a peak 12 weeks after infection (Figure 2A–C),

although increases in IL-4 levels did not reach statistical

significance. These data indicate that, as expected, hookworm

infection induces a systemic Th2 response.

Figure 1. Trial design. For Trial 1, 20 patients were chosen according to selection criteria [21] and divided into two groups of 10, placebo control
and hookworm infected (HW). All 20 patients completed the trial. For Trial 2, seven of the 10 patients from Group 1 in Trial 1 (placebo) chose to
participate in the next trial and received hookworm infection and gluten challenge in an identical manner to that described for Group 2 in Trial 1. The
only difference was that gut biopsies were taken at week 0 (prior to hookworm infection; denoted in bold font) in addition to biopsies taken at weeks
20 and 21. For the purposes of this study, sample collection ceased at week 20 (prior to gluten administration) and tissues from week 21 were not
utilized, except for samples taken from the worm attachment site which were collected at week 21; week 21 tissues were critical for assessment of the
effect of hookworm on the anti-gluten response in celiac disease and are therefore highlighted in italicised grey font and have been reported in
relevant publications [21,22]. 1Forty millilitres of blood per person were collected at weeks 0, 4, 12 (Trial 1 only), 20 and 21. 2Gut biopsies were taken
at weeks 0 (Trial 2 only), 20 (pre-gluten ingestion) and 21 (post-gluten ingestion) using a gastroscope as described elsewhere [21].
doi:10.1371/journal.ppat.1002520.g001

Human Immune Responses to Hookworm Infection
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To establish whether this Th2 response was present at the site of

adult worm residence, duodenal biopsies were taken at week 20

after hookworm infection (immediately prior to gluten challenge).

Biopsies were also taken from directly adjacent to the hookworm

attachment site at week 21 (after gluten challenge) from 5 of the 10

hookworm-infected individuals where adult worms were observed

by endoscopy. All biopsies were cultured without stimulation and

supernatants were removed for cytokine analysis. Biopsies from

both control and hookworm infected individuals produced similar

levels of IL-4 and IL-13 (Figure 3A and C). However, significantly

Figure 2. Systemic production of hookworm-specific cytokines. Peripheral blood mononuclear cells were harvested from subjects in Trial 1
and cultured for 120 h at 37uC in either tissue culture medium (MED) or MED containing 10 mg/ml Necator americanus ES products (NaES). Cell
supernatants were removed and levels of IL-4 (A), IL-5 (B) and IL-13 (C) determined using a Cytometric Bead Array. Cytokine levels from PBMCs
stimulated with just MED alone were subtracted from those stimulated with NaES. Data were analysed by Kruskal-Wallis non-parametric ANOVA,
comparing time points at weeks 4, 12 and 20 to week 0 within each group.
doi:10.1371/journal.ppat.1002520.g002

Human Immune Responses to Hookworm Infection
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increased levels of IL-5 were produced by biopsy cells from

hookworm-infected individuals, especially those biopsies taken

adjacent to the hookworm attachment site (Figure 3B). The

increased levels of IL-5 at the hookworm attachment sites were not

the result of gluten challenge, because at week 21, biopsies from

sites distal to the hookworm attachment sites produced decreased

Figure 3. Production of Th2 cytokines in the duodenal mucosa of hookworm infected individuals. Duodenal biopsies from Trial 1, taken
from either the duodenum at week 20 post-infection or from directly adjacent to an adult hookworm attachment site (HW site – determined by
endoscopy) at week 21 in the hookworm group only, were cultured for 24 h in tissue culture medium at 37uC with 95% O2/5% CO2. Cell supernatants
were removed and levels of IL-4 (A), IL-5 (B) and IL-13 (C) were determined using a Cytometric Bead Array. Data were analysed by Mann-Whitney U
test.
doi:10.1371/journal.ppat.1002520.g003

Human Immune Responses to Hookworm Infection
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levels of IL-5 (12.77 pg/ml +/2 13.90) compared to biopsies from

week 20 (23.47 pg/ml +/2 31.88) or the hookworm attachment

site (41.18 pg/ml +/2 21.33).

Characterisation of the mucosal immune response before
and after hookworm infection

Figures 2 and 3 show that experimental hookworm infection

induces a systemic, Necator antigen-specific, Th2 response, and a

weak but detectable basal mucosal Th2 response. In order to

further characterise this response, duodenal biopsies were taken

before (week 0) and after an established hookworm infection (week

20 post-prime infection) from infected individuals in Trial 2.

Cytokines were measured in the supernatants of duodenal biopsies

cultured for 24 h in medium only. There was no significant

difference in the protein levels of IL-2, IFN-c, TNF-a, IL-17A, IL-

4, IL-5, IL-10 and IL-13 when comparing wk 0 (pre-infection) to

wk 20 (post-infection) (Fig. S1). RNA transcripts were obtained to

assess gene expression levels in the absence of ex vivo stimulation for

a range of cytokines and transcription factors associated with

different T helper cell phenotypes. Levels of mRNA encoded by

the Th2/Th9 genes IL-4, IL-5, IL-13, IL-9 and GATA-3 appeared

unaffected by hookworm infection using this technique (Figure 4A–

E). Accumulation of mRNA transcribed by the regulatory T cell

associated gene Foxp3 (Figure 4F), or the gene encoding the

immunosuppressive cytokine TGF-b (Figure 4G), were also

unaffected, although levels of Foxp3 mRNA were below the

detection limits of the assay in the majority of the samples tested.

However, accumulation of mRNA encoded by the ALDH1A2 gene

was significantly increased after hookworm infection (Figure 4H).

ALDH1A2 encodes retinaldehyde dehydrogenase, an enzyme that

is important for production of retinoic acid from vitamin A

metabolites. Transcription of the Th1 cytokine gene IFN-c
(Figure 4I) and the T cell proliferative cytokine gene IL-15

(Figure 4J) were also upregulated after hookworm infection. Levels

of the Th17-associated genes, IL-17A and RORct, were both

extremely low, close to or below the detection limit of the assay,

but nevertheless appeared unchanged after hookworm infection

(Figure 4K and M). Accumulation of mRNA transcribed by the

Th17 inducing and stabilising cytokine IL-23, however, was

strongly down-regulated after hookworm infection (9.6-fold

decrease in the mean value) (Figure 4L).

Hookworm antigen-specific systemic and mucosal
responses

In Trial 1, PBMCs that were restimulated with NaES from

hookworm-infected individuals but not uninfected controls

produced Th2 cytokines (Figure 2). PBMCs and duodenal biopsies

were cultured with NaES or MED alone from all individuals in

Trial 2 before and after hookworm infection. Supernatants from

both cultures were taken for soluble cytokine analysis, and

restimulated biopsies were taken after culture for RNA prepara-

tion and qPCR. In pre-infection biopsies (wk0), there was no

significant difference in IL-2, IFN-c, TNF-a, IL-17A, IL-4, IL-5,

IL-10 and IL-13 produced after restimulation in culture with

NaES compared to medium only (Figure S2). When PBMCs from

hookworm-infected participants were restimulated with NaES they

produced IL-4, IL-5 and IL-13 (Figure 5A, D, G), as previously

shown (Figures 2A–C). We then extended these studies to show

that restimulated biopsies also produced these cytokines, both at

the levels of secreted protein (Figure 5B, E and H) and RNA

transcripts (Figure 5C, F and I), although we did not detect a

change for IL-4 transcript levels. PBMCs and biopsies from

infected individuals also produced IL-9 and IL-10 in response to

NaES (Figure 5J–O), however increased IL-10 production to

NaES was not detectable by qPCR.

The qPCR data from unstimulated biopsies taken before and

after hookworm infection indicated that infection may induce a

Th1 response, while suppressing a Th17 response (Figure 4). We

also assessed the levels of inflammatory cytokines produced by

PBMCs and biopsy cultures when stimulated with NaES. As

shown in Figure 6, restimulation with NaES induced upregula-

tion of the proliferative cytokine IL-2 in both PBMCs and

biopsy cultures at the protein level (Figure 6A and B), but

corresponding levels of mRNA were too low to detect by qPCR

(Figure 6C). Restimulation with NaES also induced production

of the Th1 cytokine IFN-c from PBMCs (Figure 6D), but not

from biopsy cultures, either at the protein (Figure 6E) or RNA

(Figure 6F) levels. We did not detect upregulation of the Th17

cytokine IL-17A from cultures of PBMCs or biopsies restimu-

lated with NaES (Figure 6G–I). The accumulation of mRNA

transcribed by another T cell proliferative cytokine gene, IL-15

(Figure 6J), the immunosuppressive cytokine gene TGF-b
(Figure 6K) and the wound healing cytokine IL-22 (Figure 6L),

were also increased in NaES restimulated biopsies. Again,

biopsies taken prior to hookworm infection did not produce

upregulated expression of any of these cytokines upon NaES

stimulation (Figure S2).

Discussion

Here, we present the first description of the mucosal cytokine

response of healthy humans to either an experimental or naturally

acquired helminth infection. As all individuals in this trial were

infected when in established remission of their celiac disease whilst

maintaining a strict gluten-free diet, and all analyses presented in

this study were performed with blood and tissue collected prior to

gluten challenge (excepting data acquired from the adult

hookworm attachment site, Figure 3), we regard the subjects as

being representative of normal, healthy individuals, and treat our

results accordingly.

The polarisation of the T cell response in hookworm infection

is of some debate, with some studies showing a mixed Th1/Th2

response, while others report only a polarised Th2 response

[12,26]. These conflicting results might be explained by

differences in methods used to assess cytokine levels and antigen

preparation [26]. We found a robust Th2 response produced to

hookworm antigen as expected, with some evidence of a systemic,

but not mucosal hookworm-specific Th1 response. Using qPCR

with unstimulated biopsies taken before and after hookworm

infection, we showed upregulation of IFN-c transcripts. However,

restimulation of post-infection biopsies with NaES did not result

in increased IFN-c production. Thus, although an innate IFN-c
response develops after hookworm infection, we could not

identify antigen-specific memory Th1 cells in the duodenal

mucosa.

We did not detect a significant alteration of levels of mRNAs

encoded by the Th17 cytokine IL-17A or transcription factor

RORct in PBMCs or biopsies. This is surprising, as we observed

increased levels of ALDH1A2 and IL-15 mRNAs in unstimulated

mucosa with further enhancement of IL-15 mRNA accumulation

following stimulation with NaES. Although retinaldehyde dehy-

drogenase (encoded by ALDH1A2) produces the normally

immunosuppressive retinoic acid, which imprints gut homing on

T cells [27] and switches the pro-inflammatory Th17 to a

regulatory response [28], in active celiac disease the impact

appears quite the opposite whereby elevated retinoic acid and IL-

15 promotes Th1/17 responses in the gut mucosa [29]. We did not
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detect an increase in Treg markers in response to hookworm

infection in this study, or when previously measured by FACS and

immunohistochemistry [22], despite a wealth of evidence of Treg

induction following experimental helminth infections and admin-

istration of ES proteins in mouse models [30–32], and naturally

acquired infections of humans with other helminths [33,34].

Figure 4. Ex vivo cytokine gene expression in the duodenal mucosa of hookworm infected individuals. Duodenal biopsies from Trial 2
were taken before (week 0) and 20 weeks after hookworm infection, and RNA was prepared ex vivo. Levels of IL-4 (A) IL-5 (B), IL-13 (C), IL-9 (D), GATA-3
(E), Foxp3 (F), TGF-b (G), ALDH1A2 (H), IFN-c (I), IL-15 (J), IL-17A (K), IL-23 (L) and RORct (M) transcripts were determined by quantitative real time RT-PCR.
doi:10.1371/journal.ppat.1002520.g004
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Figure 5. Systemic and mucosal hookworm specific immune responses. Peripheral blood mononuclear cells (PBMCs) from Trial 2 were
cultured for 120 h with either tissue culture medium (Med) or Med containing 10 mg/ml Necator americanus ES products (NaES). Duodenal biopsies
were also taken at week 20 post-infection, and cultured for 24 h at 37uC, 95% O2/5% CO2, in either Med alone or 10 mg/ml NaES in Med. Cell-free
supernatants were taken from both PBMCs and biopsy cultures and levels of soluble cytokines were determined by cytometric bead array. RNA was
also prepared from biopsies after stimulation and quantitative real time RT-PCR was used to determine levels of cytokine gene transcripts. Soluble
cytokines released from PBMCs are shown in panels A, D, G, J and M. Biopsy-derived soluble cytokines are shown in panels B, E, H, K and N. Biopsy
cytokine transcripts are shown in panels C, F, I, L and O. Cytokine levels determined were IL-4 (A–C), IL-5 (D–F), IL-13 (G–I), IL-9 (J–L) and IL-10 (M–O).
doi:10.1371/journal.ppat.1002520.g005
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In active celiac disease, IL-15 is considered a crucial cytokine in

maintaining autoimmune (Th1/Th17) pathology, a relationship

now recognized somewhat incongruously as being dependent on

retinoic acid [29]. In isolation, our IL-15 and ALDH1A2 data

would argue against the potential for hookworm infection to

protect against gluten toxicity in celiac disease, the primary

incentive for undertaking this clinical trial [21,22]. However, in

contrast to the increased accumulation of IL-2, IL-15 and

ALDH1A2, accumulation of mRNA encoding the innate Th17-

inducing and stabilising IL-23 was potently suppressed by

hookworm infection, potentially neutralising the impact of these

Th17 promoting cytokines. Consistent with suppression of IL-23

mRNA accumulation, Th17 inflammation did not occur. IL-23 is

produced by antigen presenting cells under the influence of

microbial signals, and is a key cytokine in driving intestinal

inflammation [35]. Moreover, IL-23 was recently shown to induce

production of pro-inflammatory cytokines by innate lymphoid cells

in the gut of patients with Crohn’s disease [36]. Thus we

hypothesise that hookworm infection suppresses pro-inflammatory

cytokine production (such as IL-23) by innate cells in the gut,

similarly to that seen in H. polygyrus infection in mice where a

suppressive dendritic cell subset is expanded in the mucosa [37],

and ES proteins from the parasite suppress activation of these cells

and subsequent cytokine production [38].

IL-22, an IL-23 dependent Th17 cytokine, acts via the IL-22R

expressed on intestinal epithelial cells, promoting innate immunity

against bacteria, cell regeneration and tissue healing. In inflam-

matory bowel disease, high levels of IL-22 are present in inflamed

tissue [39]. Interestingly, Broadhurst et al. described a case study of

a patient with ulcerative colitis who deliberately ingested

thousands of eggs of the whipworm Trichuris trichuria in which

infection ameliorated disease activity, and this effect correlated

with increased expression of Th2 cytokines and IL-22 [23]. In our

study, biopsies from patients infected with a small number of N.

americanus larvae showed upregulation of IL-22 mRNA levels after

restimulation with NaES in vitro. It is beyond the scope of this

discussion to attempt to define what cytokine milieu determines

when and what Th17 complex drives inflammation or regulation.

It does seem, however, that helminth-stimulated IL-22, perhaps

derived from a non-Th17 source, such as NK cells or CD11c+
cells, contributes to the biological relationship between parasite

and host, whilst conditioning and promoting a less inflammatory

phenotype [23,40,41].

Both the regulatory cytokines, TGF-b and IL-10, were induced

by hookworm infection, but this was only evident in mucosa

restimulated with NaES. During H. polygyrus infection in mice, Th2

responses are induced in lamina propria T cells, and Th1

responses in these T cells are inhibited by parasite-induced TGF-

b- and IL-10-producing T cells [42]. We may have identified a

similar regulatory process, possibly adapted to further fine tune

Th2 associated damage at the hookworm attachment site. If the

rate of progression and the severity of damage to the mucosa

accompanying the worm’s attachment is central to determining

which population of parasites a particular host will sustain, as has

been suggested in an earlier endoscopic study of N. americanus

survival in experimentally infected humans [3], these inflamma-

tion-modifying cytokines almost certainly have a role.

Herein we characterised the systemic and mucosal immune

responses to an anthropophilic hookworm infection. As expected,

we detected a systemic and mucosal hookworm-specific Th2

response in experimentally infected people. Our data indicate that

although an antigen-specific Th1 response was detectable in the

blood, no antigen-specific IFN-c was detectable in the mucosa.

Therefore the increased IFN-c we detected in the mucosa most

likely comes from an innate source, possibly NK cells [24]. Despite

enhanced production of IL-15 and ALDH1A2, levels of IL-23 were

dramatically suppressed after hookworm infection, possibly

accounting for the absence of a Th17 response via suppression

of antigen presenting cell function.

Supporting Information

Figure S1 Cytokine production in the duodenal mucosa
of hookworm infected individuals. Duodenal biopsies from

Trial 2 were taken pre-infection (week 0) and 20 weeks after

hookworm infection (post-infection). Protein in the supernatant

was measured 24 h after incubation at 37uC 5%CO2 with

medium only. Levels of IL-2 (A) IFN-c (B),TNF-a (C), IL-17A

(D), IL-4 (E), IL-5 (F), IL-10 (G) and IL-13 (H) were determined by

cytokine bead array (BD Biosciences). No significant differences

were seen before and after infection.

(TIFF)

Figure S2 Cytokine production prior to hookworm
infection in the duodenal mucosa after restimulation
with NaES. Duodenal biopsies from Trial 2 were taken before

(week 0) hookworm infection. Cytokines in the supernatant were

measured 24 h after incubation at 37uC 5%CO2. Levels of IL-2

(A) IFN-c (B), TNF-a (C), IL-17A (D), IL-4 (E), IL-5 (F), IL-10

(G)and IL-13 (H) were determined by Cytokine Bead Array (BD

Biosciences). No significant differences were seen cytokine levels

produced in cultures restimulated with NaES.

(TIFF)

Table S1 Sequences of primers used for real-time RT-
PCR.

(DOC)
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