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Synaptic and Intrinsic Activation of GABAergic Neurons
in the Cardiorespiratory Brainstem Network
Julie G. Frank, David Mendelowitz*

Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States of America

Abstract

GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the
respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these
GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic
neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also
have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the
Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to
cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with
inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory
neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire
after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium
channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca2+ currents,
but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous
firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing
GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm
generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase
their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that
are most active during expiration and provide a framework for respiratory sinus arrhythmia as there is an increase in heart
rate during inspiration that occurs via inhibition of premotor parasympathetic cardioinhibitory neurons in the NA during
inspiration.

Citation: Frank JG, Mendelowitz D (2012) Synaptic and Intrinsic Activation of GABAergic Neurons in the Cardiorespiratory Brainstem Network. PLoS ONE 7(5):
e36459. doi:10.1371/journal.pone.0036459

Editor: Michael N. Nitabach, Yale School of Medicine, United States of America

Received January 12, 2012; Accepted April 6, 2012; Published May 3, 2012

Copyright: � 2012 Frank and Mendelowitz. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health National Heart, Lung, and Blood Institute Grants HL-49965, HL-72006, and HL-59895 to Dr.
Mendelowitz and American Heart Association predoctoral fellowship to Dr. Frank. Confocal images were generated with a grant from The National Center for
Research Resources 1S10RR025565-01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dmendel@gwu.edu

Introduction

Rhythmically active neuronal networks are critically involved in

numerous physiological and cognitive functions and are essential

for various behaviors such as sleep, addiction, arousal, memory

and breathing. The formation of spatial memory is reliant on theta

rhythm in the hippocampus, for example [1]. Pacemaker neurons

are key rhythmicity generators in many of these networks [2,3].

The most well studied pacemaker network exists in the

suprachiasmatic nucleus of the hypothalamus, an area that is

responsible for food intake, sleep and the regulation of body

temperature and heart rate [3,4]. Another example of pacemaker

modulation of neural networks is in the respiratory system; it has

been postulated that the preBötzinger complex (preBötC) is the

site of respiratory rhythm generation [5,6].

The neurotransmitter GABA is known to play a vital function in

several pacemaker networks, but little is known regarding the role

of GABAergic neurons as a direct source or modulator of

inspiratory activity in the respiratory network. GABAergic

neurons have been found in several brain regions involved in

the control of cardiorespiratory function [7–10] including the

nucleus tractus solitarius (NTS) [11,12] and the ventrolateral

medulla [13,14]. The modulation of heart rate and production of

respiratory sinus arrhythmia (RSA) [15,16] is dependent upon

both the activity of the cardioinhibitory parasympathetic system,

originating from brainstem cardiac vagal neurons (CVNs), and the

GABAergic neurons active in inspiration that project to and

inhibit CVNs during each inspiration. Diminished CVN activity

and RSA are strong risks factors and predictors of morbidity and

mortality [17,18].

Recent work has shown that four distinct areas in the brainstem

are the origin of GABAergic neurons that project to CVNs, three

in the vicinity of the nucleus ambiguus (NA), corresponding to the

rostro-ventral lateral medulla (RVLM) and preBötC, and one in

the NTS [19]. Similarly, inspiratory-modulated GABAergic

neurons have been localized to sites within the ventral medulla:

Kuwana et al. demonstrated a population of GABAergic neurons

in the preBötC that fire bursts of action potentials in unison with

hypoglossal rootlet firing, but did not characterize the firing

properties or synaptic inputs to these neurons [20]. In this study

we tested two hypotheses relevant to a fundamental issue in the

origin of rhythmogenesis within the cardiorespiratory network: (1)
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the subpopulation of GABAergic neurons in these distinct

brainstem sites depends upon increased excitatory glutamatergic

and/or cholinergic neurotransmission during inspiration to

generate respiratory related activity; or (2) they possess inherent

respiratory pacemaker like properties that enable them to fire

spontaneously and aid the initiation of respiratory patterning. To

test these hypotheses, we identified a population of GABAergic

neurons in the brainstem via expression of GFP under the control

of the Gad1 (GAD67) gene promoter, and examined the role of

excitatory synaptic neurotransmission and inherent firing proper-

ties of these neurons in both voltage clamp and current clamp

conditions.

Methods

Subjects
All animal procedures were performed with the approval of the

Animal Care and Use Committee of The George Washington

University in accordance with the recommendations of the panel

on euthanasia of the American Veterinary Medical Association

and the National Institutes of Health Guide for the Care and Use of

Laboratory Animals.

GABAergic neurons were visualized from transgenic mice

(Jackson Laboratories, Bar Harbor, MA) expressing GFP under

the control of the Gad1 (GAD67) gene promoter. Pups were 3–7

days old on the day of the experiment. All mice were maintained

in a 12-hour light/dark cycle.

Procedures
CVNs were retrogradely labeled from the parasympathetic

ganglia in the fat pads at the base of the heart as described

previously [21]. In brief, pups were exposed to hypothermia to

slow heart rate. The heart was exposed by a right thoractomy and

the retrograde fluorescent tracer X-rhodamine-5-(and 6)-isothio-

cyanate (Molecular Probes, Eugene, OR) was injected into the fat

pads at the base of the heart within the pericardial sac. The

fluorescent tracer was absorbed by the terminals of the

preganglionic parasympathetic neurons and then retrogradely

transported to the cell bodies of CVNs in the NA. After at least

24 hours recovery pups were anesthetized with isoflurane,

sacrificed by cervical dislocation, and the hindbrain was removed

and placed in cold physiological saline solution (in mM: 140 NaCl,

5 KCl, 2 CaCl2, 5 glucose, 10 HEPES, bubbled with 100% O2,

pH 7.4).

Preparation
The medulla was mounted on a wax cutting block and placed in

a vibrating blade microtome (Leica, Nussloch, Germany). Serial

transverse sections were sliced in rostro-caudal progression until

the inferior olives and the NA could be visualized on the rostral

surface of the tissue. An 800 mm thick slice was taken, containing

the parasympathetic CVNs, the rostral hypoglossal nucleus and

rootlets, and the preBötC (Figure 1) and additional circuitry for

respiratory activity [6]. Spontaneous and respiratory-related

activity was recorded by monitoring motor-neuron population

activity from hypoglossal nerve rootlets using a suction electrode.

Hypoglossal rootlet activity was amplified 50,000 times, was

filtered (10- to 300-Hz band pass; CWE Inc., Ardmore, PA) and

electronically integrated (t= 50 ms; CWE Inc.).

Confocal Microscopy
Confocal images were collected on a Zeiss LSM 710 system

(Carl Zeiss Microimaging GmbH), equipped with Axio Examiner

Z1 upright microscope and W Plan-Apo 206 (NA, 1.0) (DIC VIS-

IR WD = 1.8) and Plan-Apochromat 636 (NA, 1.40) oil (DIC)

objectives, was used. The system has a 32 channel spectral-

detection Quasar photomultiplier and two single channel photo-

multipliers to record the backward emission. Argon 488 line of a

multiline 25 mW argon laser was used to excite GFP, whereas

rhodamine was excited with 5 mW HeNe emitting at 633 nm.

The microscope was equipped with Prior x/y/z scanning stage,

which permitted capturing tile stack images. Emission filtering was

adjusted by setting the desired spectral window for recording using

the Zen 2009 software. In addition, the Zen 2009 software

provided an online, linear spectral unmixing algorithm, which

allowed the separation of several dyes based on spectral

characteristics, despite emission spectra overlap, known as online

spectral fingerprinting. Emission filtering was adjusted by setting

the desired spectral window for recording.

Whole Cell Patch-Clamp
Slices were perfused in room temperature aCSF (in mM: 125

NaCl, 3 KCl, 2 CaCl2, 26 NaHCO3, 5 glucose, 5 HEPES,

equilibrated with 95% O2, 5% CO2, pH 7.35–7.4). Patch pipettes

(2.5–3.5 M) containing a potassium gluconate solution of the

following composition (in mM): 135 K+ gluconic acid, 10 HEPES,

10 EGTA, 1 CaCl2, and 1 MgCl2, pH 7.4 were visually guided to

the surface of individual GABAergic neurons using differential

interference optics and infrared illumination (Zeiss, Oberkochen,

Germany). The pipette was advanced until a seal was obtained

over 1 GV between the pipette tip and the cell membrane of the

identified neuron. The membrane under the pipette tip was then

ruptured with a brief suction to obtain whole cell patch-clamp

recordings. All the drugs used in these experiments were either

focally applied to the patched neuron using a pneumatic

picopump pressure delivery system and were continuously ejected

from a glass micropipette positioned within 30 mm from the

patched neuron (pressure ,4 psi), or were included in the

perfusate. The maximum range of drug application with focal

application has been determined previously to be 100–120 mm

downstream from the drug pipette and considerably less behind

the drug pipette [22]. EPSCs were isolated by the focal application

of gabazine (25 mM) and strychnine (1 mM) to block GABAergic

and glycinergic postsynaptic currents, respectively, throughout the

experiment. Dihydro-beta-erythroidine (DHßE) at 1 mM and

100 mM, and alpha-bungarotoxin (a-Btx) at 100 nM were focally

applied to block a4ß2 and a7 nicotinic receptor activity,

respectively. All synaptic events were blocked at the end of each

experiment with the focal application of D-2-amino-5-phospho-

novalerate (AP-5, 50 mM), and 6-cyano-7-nitroquinoxaline-2,3-

dione (CNQX, 50 mM) to block NMDA and non-NMDA

glutamatergic receptors, respectively.

For current clamp experiments, CNQX (50 mM) and AP-5

(50 mM) were added to the perfusate to block all glutamatergic

neurotransmission within the tissue to examine potential the

pacemaker properties of these neurons. 8 out of 20 cells continued

to fire in the presence of these glutamatergic antagonists and were

examined further for pacemaker properties by inclusion of

100 mM cadmium chloride or 20 mM riluzole in the perfusate.

Statistical Analyses
Results are graphically presented as means 6 SE. EPSC

frequency was grouped into 1-s bins and cross-correlated with the

onset of inspiratory–related hypoglossal activity. Inspiratory bursts

were identified from the raw hypoglossal output, and only bursts

whose amplitude was double the basal noise were analyzed.

Statistical comparisons of burst related activity were performed

using one-way ANOVA and Neumann-Keuls for post hoc

Putative Pacemaker GABA Neurons in the Brainstem
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Figure 1. Images of GABAergic neurons in proximity to CVNs. a. In this confocal image, CVNs in the NA are labeled with rhodamine and are
surrounded by smaller GABAergic cell bodies and terminals labeled with GFP. b. The 800 mm thick transverse medullary slice preparation from P3–P6
mice has all the necessary circuitry for respiratory rhythm generation including the preBötC, respiratory hypoglossal motorneurons and intact
hypoglossal nerve rootlets, and the NA.
doi:10.1371/journal.pone.0036459.g001

Putative Pacemaker GABA Neurons in the Brainstem
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analysis, comparisons before and after drug applications without

bursting were compared using paired T-tests. Statistical signifi-

cance for all data was set at p,0.05.

Results

As shown in Figure 1a, parasympathetic cardiac neurons,

identified by the presence of the fluorescent tracer rhodamine

(shown in red) [23] and smaller GABAergic neurons (shown in

green) identified by visualization of the expressed GFP, were co-

localized in the ventrolateral medulla. GABAergic cell bodies were

located in close proximity to CVNs, and numerous GABAergic

punctuate axonal fibers and contacts made close apposition to, and

in some examples partially encircled, the somata of CVNs.

To identify respiratory related GABAergic neurons we utilized a

thick in vitro brainstem slice for whole cell recordings from

GABAergic neurons while simultaneously recording inspiratory

activity from the hypoglossal rootlet. As previous work [19]

identified 4 specific foci as the origin of GABAergic neurons that

project to CVNs we limited our study to those GABAergic neurons

directly ventral to the NA as most likely involved in cardiorespi-

ratory interactions (see Figure 1b). Approximately 1 in 20

GABAergic neurons in this area displayed respiratory related

activity, defined as possessing either a 25 percent increase in

EPSCs while recorded in voltage clamp configuration, or having

increased spontaneous firing during inspiratory activity, recorded

in current clamp configuration, and subsequent experiments were

limited to this population of respiratory related GABAergic

neurons.

As previous work has shown focal application of the nicotinic

receptor antagonist dihydro-beta-erythroidine (in a beta2-selective

concentration, 3 mM) abolished the respiratory-evoked increase in

GABAergic neurotransmission to CVNs [16], we hypothesized

nicotinic cholinergic receptors would play a role in the function

and activity of these inspiratory active GABAergic neurons. We

used two different nicotinic receptor antagonists, DHßE and a-

Btx. DHßE has been shown to block nicotinic receptors containing

ß2 subunits at lower concentrations (1 mM–3 mM) and all

Figure 2. Respiratory-related GABAergic neurons receive glutamatergic input that is blocked by antagonists CNQX and AP-5.
Glutamatergic receptors mediate excitatory neurotransmission to inspiratory GABAergic neurons. Inspiratory-related bursting activity was recorded
from the hypoglossal rootlet (top trace) and electronically integrated (middle trace). Excitatory transmission to GABAergic neurons (bottom trace) was
isolated by focal application of GABA (gabazine; 25 mM) and glycine (strychnine; 1 mM) receptor antagonists. Under control conditions there was a
significant increase in EPSC frequency in the identified GABAergic neurons during inspiratory bursts control spontaneous: 3.5+/20.5, control
inspiratory: 12.6+/21.9 Hz. DHßE (at concentrations of 1 mM, n = 8 and 100 mM, n = 7), and a-Btx (100 nM, n = 6) did not significantly change
spontaneous or inspiratory related EPSC frequency. CNQX and AP5 blocked EPSC spontaneous and inspiratory frequency (p,0.05). The average
results from all neurons tested (DHßE at 1 mM n = 8, at 100 mM n = 7, and with a-Btx at 100 nM, n = 6) are shown in the peri-inspiratory activity
histogram, bottom, illustrating the average EPSC frequency (Hz) for each of the 5 seconds before the burst, frequency during the inspiratory burst
(which typically lasted 1–2 seconds), and each of the 5 seconds following the inspiratory burst.
doi:10.1371/journal.pone.0036459.g002

Putative Pacemaker GABA Neurons in the Brainstem
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heteromeric receptors at higher concentrations (50–100 mM)

[24,25], while a-Btx blocks homomeric a7 nicotinic receptors [26].

Neither the low (n = 8) or high (n = 7) concentration of DHßE

had any significant effect on spontaneous or inspiratory EPSCs in

these GABAergic neurons, as shown in figure 2 (control

spontaneous: 3.5+/20.5, control inspiratory: 12.6+/21.9 Hz,

1 mM: spontaneous: 2.8+/20.8 Hz; inspiratory: 10.2+/22.2 Hz;

100 mM: spontaneous: 2.5+/20.9 Hz; inspiratory: 10.3+/

22.1 Hz). Similarly, 100 nM a-Btx did not alter either sponta-

neous or inspiratory-related synaptic neurotransmission to GA-

BAergic neurons (n = 6, control spontaneous: 3.6+/21.0, inspira-

tory 11.7+/21.5 Hz, 100 nM a-Btx spontaneous: 2.2+/20.8 Hz;

inspiratory: 13.1+/22.2 Hz). All synaptic activity to these

GABAergic neurons was glutamatergic as shown by the abolish-

ment of EPSCs with the AMPA/kainate and NMDA receptor

antagonists CNQX and AP-5, respectively (n = 7).

To examine the spontaneous pacemaker-like properties and

firing patterns of inspiratory active GABAergic neurons these cells

were recorded in the current clamp configuration. These cells fired

bursts of action potentials that started with the onset of inspiratory

activity in the hypoglossal rootlet; spontaneous firing frequency

increased from 1.4+/20.5 prior to the inspiratory burst to 5.9+/

21.0 Hz during inspiratory activity, (n = 20). To determine

whether these action potentials were being generated by synaptic

inputs or were due to intrinsic pacemaker-like properties of the

cell, the glutamatergic antagonists CNQX (50 mM) and AP-5

(50 mM) were included in the perfusate. In greater than half of the

examined GABAergic neurons (12 of 20), the glutamate receptor

antagonists abolished all spontaneous activity (Figure 3). In the

remaining 8 GABAergic neurons (out of 20 total) that continued to

fire in the presence of these glutamatergic receptor antagonists, the

overall frequency of action potential firing was not different in the

presence of the glutamatergic receptor antagonists (control: 1.7+/

20.4 Hz; CNQX & AP-5: 1.7+/20.5 Hz, n = 8), see Figure 4.

To determine if spontaneous activity in these neurons could occur

in the absence of all synaptic inputs to these neurons the calcium

channel blocker cadmium chloride (100 mM) was added to the

perfusate to prevent synaptic release of transmitters. The sponta-

neous firing of GABAergic neurons in this study was not altered by

the inclusion of cadmium chloride (control frequency = 1.7+/20.4,

with AP-5 and CNQX 1.7+/20.5 and in the presence of CdCl2
1.8+/20.6 Hz, n = 8, p.0.05), indicating this GABAergic popu-

lation of pacemaker neurons continue to fire in the absence of

neurotransmitter release and synaptic activity. However the pattern

Figure 3. GABAergic inspiratory nonpacemaker cells fire in bursts that are blocked by CNQX and AP-5. GABAergic neurons fire bursts of
action potentials during inspiration. Cells were patch clamped in the current clamp configuration with a small amount of current when needed
(,30 pA) injected to hold it at 265 mV. Inspiratory activity was measured from the hypoglossal rootlets (top two traces). Respiratory activity was
greatly reduced in this population of cells. (Control: 1.7+/20.4 Hz; CNQX & AP5: 0.2+/20.3 Hz; p,0.05).
doi:10.1371/journal.pone.0036459.g003

Putative Pacemaker GABA Neurons in the Brainstem
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of firing became more variable in the presence of AP-5 and CNQX,

as well as with CdCl2, and as a measure of this variability the

coefficient of variance increased from a control value of 0.67 to 0.82

in the presence of AP-5 and CNQX, and 0.94 with CdCl2.

In an additional set of experiments (Figure 5), the role of the

persistent sodium current (INaP) was examined by bath application

of 20 mM riluzole, an INaP blocker. Riluzole significantly (p,0.05)

reduced, but did not abolish, spontaneous action potential firing

(prior to riluzole: 2.9+/20.8 Hz; riluzole: 1.1+/20.3 Hz, n = 6),

coefficient of variance 0.67.

Discussion

Discovering the neurons and neurotransmitters underlying

respiratory genesis and function is vital for our understanding of

cardio-respiratory control in the brainstem, both in healthy and

disease states. In this study, using a fictive respiratory brainstem

preparation, we identified a population of inspiratory GABAergic

neurons in the ventral medulla that receive bursts of excitatory

neurotransmission during inspiration. This excitatory transmission

was abolished with the glutamatergic receptor antagonists AP-5

and CNQX. In addition, a subset of these inspiratory GABAergic

neurons continued to fire action potentials in the absence of

excitatory synaptic drive, indicating these GABAergic neurons

may possess pacemaker-like properties. Moreover, the spontane-

ous firing in these GABAergic neurons was not abolished by

blocking all synaptic inputs to these neurons using the voltage-

gated calcium channel blocker cadmium chloride, indicating that

putative pacemaker activity in these neurons is independent of

both synaptic input and voltage gated calcium channels. However

spontaneous firing was significantly diminished by the persistent

sodium channel blocker riluzole, demonstrating a role of this

channel in the pacemaker-like activity of the cardiorespiratory

GABAergic neurons. However while these neurons continued to

fire in the absence of synaptic neurotransmission, their firing was

more sporadic, suggesting even with intact intrinsic membrane

properties that are sufficient for firing, neurotransmission plays an

important role in generating bursts of activity in these neurons.

Pacemaker cells have been shown to express a persistent sodium

current (INaP) [6,27,28] and/or voltage activated calcium current

(ICa) and both of these channels can facilitate rhythmogenesis

[24]. Cadmium-insensitive pacemakers rely on the INaP, whereas

cadmium-sensitive pacemakers depend on the activation of

calcium currents. INaP is ubiquitous in the preBötC throughout

all developmental periods and is hypothesized to play a critical role

in rhythm generation because of its subthreshold activation and

slow inactivation properties [29]. In this study we demonstrate

INaP plays a role in the continued activity of these GABAergic

inspiratory neurons as evidenced by the significant decrease in

frequency seen with riluzole. In contrast, there are developmental

changes in the function of the ICa channel: a recent study showed

little to no response to cadmium chloride in pacemaker neurons

Figure 4. Firing in GABAergic pacemaker neurons is altered but not blocked by glutamatergic antagonists. GABAergic neurons fire
bursts of action potentials during XII bursts. Cells were patch clamped in the current clamp configuration with a small amount of current (,30 pA)
injected to hold the cell at 265 mV. Inspiratory activity was measured from the hypoglossal rootlets (top two traces). Fewer than half of these cells
(n = 8/20) continued to fire in the presence of CNQX and AP-5. In cells that showed continued activity, the synaptic activity to these neurons, as well
as voltage gated calcium channels, were blocked by addition of cadmium chloride. Pacemaker activity patterns changed but frequencies between
the three groups was not significantly different (Control: 1.7+/20.4 Hz; CNQX & AP5: 1.7+/20.5 Hz; CdCl2: 1.8+/20.6 Hz).
doi:10.1371/journal.pone.0036459.g004

Putative Pacemaker GABA Neurons in the Brainstem
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from mice ages P0–P5, while in mice ages P8–P10 7.5% of

pacemaker cells responded with a decrease in bursting [30]. In this

study GABAergic neurons continued to fire after blockade of

glutamatergic neurotransmission with glutamate receptor antago-

nists, as well as during complete synaptic inhibition by application

of cadmium. Since our studies were conducted in mice between

P3–P6, we cannot rule out the possibility that the ICa channel

plays a role in these GABAergic neurons later in development, or

alternatively, these GABAergic pacemaker cells may not express

these channels at any point during development and instead

depend fully upon the INaP, for the generation of respiratory

pacemaker activity.

In this study we hypothesized nicotinic cholinergic receptors

would facilitate the excitatory neurotransmission to respiratory

modulated GABAergic neurons by increasing the release of

glutamate. This hypothesis was based upon previous studies from

our lab and others that have shown nicotinic acetylcholine

receptors modulate respiratory activity in the brainstem [31,32]

and facilitate GABAergic synaptic transmission to CVNs during

the respiratory cycle [16,33]. However, nicotinic receptor

activation played no endogenous role in the excitatory synaptic

neurotransmission to these GABAergic neurons as blocking

nicotinic receptors did not alter any aspect of the excitatory

neurotransmission to these GABAergic neurons during either

quiescence or rhythmic inspiratory activity. The ß4, ß2, and a7

nicotinic subunits are all present in the brainstem in various

regions including those involved in the generation and mainte-

nance of respiration [7,34]. One possible explanation for this

surprising finding of a lack of cholinergic regulation on excitatory

neurotransmission to GABAergic neurons is that nicotinic

receptors are present and are essential for the synaptic release of

GABA from GABAergic synaptic terminals, but nicotinic

receptors are not localized and/or involved in postsynaptic

activation occurring in the dendrites and soma of these

GABAergic neurons, as well as in the preceding glutamatergic

neurons that project to these GABAergic neurons.

Traditionally respiratory rhythmogensis is thought to involve

only excitatory neurotranasmission for initiation; originating from

either an isolated homogenous excitatory pacemaker population,

or a network of coupled excitatory and spontaneously firing

neurons with conditional oscillatory bursting properties that set the

respiratory rhythm within the central pattern generator of the

brainstem [6,35–38]. However Richter and colleagues have

suggested that inhibitory neurons may also play an essential role

in respiratory pattern generation as inspiratory bursting sprouts

from the ‘‘release’’ of cell populations from postsynaptic inhibition

[39]. Inspiration begins when inhibition is withdrawn from

inspiratory neurons, indicating a dynamic balance between

synaptic inhibition and excitatory intrinsic membrane potential

oscillations [39]. The spontaneously firing GABAergic neurons

identified in this study that increase their activity during

inspiration would support respiratory rhythm generation if they

acted primarily to inhibit post-inspiratory neurons and thereby

release inspiration neurons to increase their activity. The

population of inspiratory-modulated, but not spontaneously active,

GABAergic neurons might play a role in inhibiting neurons that

are most active during expiration and would also provide a

framework for respiratory sinus arrhythmia as there is an increase

in heart rate during inspiration that occurs via inhibition of

premotor parasympathetic cardioinhibitory neurons in the NA

during inspiration.
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Figure 5. GABAergic pacemaker activity is reduced by the persistent sodium current blocker riluzole. GABAergic neurons were patch
clamped in the current clamp configuration. GABAergic neurons fire bursts of action potentials even in the presence of excitatory glutamatergic
receptor blockers AP-5 and CNQX. However, application of 20 mM riluzole, the persistent sodium channel blocker nearly abolished all activity
(p,0.05) (CNQX: 2.9+/20.8 Hz; riluzole: 1.1+/20.3, n = 6).
doi:10.1371/journal.pone.0036459.g005
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