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Transcriptomic landscape of breast
cancers through mRNA sequencing
Jeyanthy Eswaran1,2,3, Dinesh Cyanam1, Prakriti Mudvari1,3, Sirigiri Divijendra Natha Reddy3,
Suresh B. Pakala3, Sujit S. Nair3, Liliana Florea4, Suzanne A. W. Fuqua5, Sucheta Godbole1

& Rakesh Kumar1,2,3

1McCormick Genomic and Proteomics Center, The George Washington University, Washington, DC 20037, USA, 2Global Cancer
Genomic Consortium, The George Washington University, Washington, DC 20037, USA, 3Department of Biochemistry and
Molecular Biology, The George Washington University, Washington, DC 20037, USA, 4McKusick-Nathans Institute of Genetic
Medicine, School of Medicine, Johns Hopkins University, Baltimore 21205, 5Breast Center, Baylor College of Medicine, One Baylor
Plaza,1220 Alkek, Houston, Texas 77030, USA.

Breast cancer is a heterogeneous disease with a poorly defined genetic landscape, which poses a major
challenge in diagnosis and treatment. By massively parallel mRNA sequencing, we obtained 1.2 billion reads
from 17 individual human tissues belonging to TNBC, Non-TNBC, and HER2-positive breast cancers and
defined their comprehensive digital transcriptome for the first time. Surprisingly, we identified a high
number of novel and unannotated transcripts, revealing the global breast cancer transcriptomic
adaptations. Comparative transcriptomic analyses elucidated differentially expressed transcripts between
the three breast cancer groups, identifying several new modulators of breast cancer. Our study also
identified common transcriptional regulatory elements, such as highly abundant primary transcripts,
including osteonectin, RACK1, calnexin, calreticulin, FTL, and B2M, and ‘‘genomic hotspots’’ enriched in
primary transcripts between the three groups. Thus, our study opens previously unexplored niches that
could enable a better understanding of the disease and the development of potential intervention strategies.

B
reast cancer is the leading cause of cancer death among women, accounting for 23% of the total cancer
cases1. The major treatment challenge remains at the level of defining the specific types and associated
biology behind the disease2–4. Breast cancer is known to be a heterogeneous disease with a variety of

morphological features and clinical manifestations due to genetic, epigenetic, and transcriptomic alterations3–7.
This phenotypic diversity severely affects the diagnosis and prognosis of breast cancer. The main difficulties in
resolving these issues include the complexities of determining specific markers and the lack of a complete
understanding of the cellular hierarchy of the mammary epithelium5,7–11. In addition, the remarkable variations
in response to therapy12,13 also emphasise the pressing need for further understanding of breast cancer evolution,
the genomic basis of heterogeneity, and the biological basis of this disease.

Numerous reports have demonstrated that the metastatic status, histological grade, tumour stage, size, and
receptor expression are the main critical determinants of breast cancer treatment14–18. Seminal gene expression
studies by Perou et al. (2000) and Sorlie et al. (2001) have established a classification of breast cancer into five broad
‘‘intrinsic phenotypic subtypes’’19,20. These subtypes include Luminal A, Luminal B, Human Epidermal Growth
Factor Receptor 2 (HER2)-positive, basal-like and normal breast-like breast cancers19–22. Correlating these subtypes
with the traditional tumour histology provided a paradigm shift in breast cancer diagnostics. Furthermore, micro-
array investigations have offered an initial basis for treatment prediction22–26 and identification of the different breast
tumour stages that are critical for breast cancer treatment27,28,11,29. However, translating molecular profiling into
clinical practice has proven to be a formidable challenge as a result of complex heterogeneity30,31.

Immunohistochemically, three broad types of breast tumours have been classified by the status of therapeut-
ically significant components, the Estrogen receptor ER, the progesterone-receptor (PR) and the HER23,32. Breast
tumours lacking expression of all three receptors are defined as triple-negative breast cancer (TNBC)33–36. TNBC
is often classified as basal-like breast cancer, which represents 10–25% of all tumours and is presumed to be
derived from a distinct cell type and a specific developmental stage of mammary epithelial cell develop-
ment19,22,34,36. In contrast, the gene expression profiles of HER2-positive (ER and PR negative) and Non-TNBC
(positive for all three receptors) tumours belong to the luminal-like subgroups, representing approximately 15%
of patients37,38. The main characteristics of TNBC are frequent occurrence in younger patients (,50), increased
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aggressiveness, significantly shorter survival periods, and higher
recurrence rates compared with the Non-TNBC subtypes. These
difficulties warrant an immediate and intensive focus on this dif-
ficult-to-treat type of breast cancer33,34,39.

To identify the precise genetic elements and study the exclu-
sive nature of TNBC and the other two types of breast cancer,
we employed a massively parallel in depth mRNA sequencing
approach40,41. This global transcriptomic profiling can illustrate the
intricate inner workings of the transcriptome at a very high resolu-
tion, enabling us to explore the distinct nature of these breast cancer
subtypes, and provide a new inventory of diagnostic and therapeutic
targets.

Results
Comparative transcriptome analysis strategy. We aimed to
compare the transcriptomic expression profile of TNBC, Non-
TNBC and HER2-positive breast cancers. Accordingly, 17 indivi-
dual human breast cancer tissues, including six TNBC samples, six
Non-TNBC samples and five HER2-positive samples, were chosen.
The mRNA sequencing of the samples was performed using the
Illumina platform, generating a total 1.2 billion high quality raw
reads (Supplementary Method, Figure 1A). In addition, we used
publicly available 50-base pair paired-end single normal breast
tissue RNA sequence data (http://www.ncbi.nlm.nih.gov/sra) for
comparisons when applicable. The reads were aligned against the
Ensembl GRCh37.62 B (hg19) reference genome using TopHat42.
The reference genome-guided transcript assembly of the aligned
reads was performed using cufflinks, a well-established transcript
assembler43. Furthermore, all subsequent analyses were conducted
using only the transcripts that were identical to the reference
identified by cuffcompare. The transcripts were binned according
to their abundance, and the overall relative abundances of the
transcripts that were expressed in all three breast cancer types on
each chromosome were compared.

From the assembled transcripts and their abundances, the follow-
ing statistical and secondary analyses were performed. First, the cor-
relation between the samples was determined using Principle
Component Analysis (PCA), unsupervised hierarchical clustering
and Spearman’s correlation. Second, the transcripts that were differ-
entially expressed between the three breast cancer groups and the
pairwise comparison of all 17 individual samples were identified
using univariate Fisher’s exact test (F-test) and cuffdiff, respectively.
The cuffdiff analysis employs various parametric approaches, such as
the normal and negative binomial distributions. The F-test was con-
ducted using the statistical package, R. Third, the transcriptional and
post-transcriptional changes were compared in each breast cancer
type. In this analysis, we focused on two critical transcriptional ele-
ments, which included the highly abundant primary transcripts and
the genomic loci that comprised the highest number of primary
transcripts, i.e., the genomic hotspots. Finally, we also investigated
the significance of the predominant intronic reads found in all three
types of breast cancer. Together, these analyses allowed us to com-
pare the transcriptomic and post-transcriptomic profiles of TNBC,
Non-TNBC and HER2-positive breast cancer.

Generation of the TNBC, Non-TNBC and HER2-positive breast
cancer digital transcriptome. Among the 1.2 billion high quality
raw reads, 71.03% of the reads were mapped to the human genome
(Figure 1B) (Supplementary Tables 1 and 2). The distribution of
these mRNA reads indicated that most reads (58%) mapped to
exons. However, intriguingly, 34.6% of the reads mapped to
intronic regions while 6.4% and 2.8% mapped to intergenic and
junction regions, respectively (Figure 1C) (Supplementary Table
3). In each sample, the aligned reads supported an average of
80,279 transcripts (p value and FDR less than 0.05) that were
identical to previously annotated transcripts (Supplementary Table

4, the transcript reassembly of HSP901B is shown as an example in
Supplementary Figure 1).

Interestingly, an average of 16,245 distinct genes per sample were
detected, indicating the diversity introduced by isoforms of various
genes (Supplementary Table 4). From the total of 17 sequenced
breast cancer samples, 1,364,752 known transcripts were identified,
comprising 5,226,535 and 11,761,893 unique and total exons,
respectively (Figure 1D, Figure 2A, 2B and 2C, Supplementary
Table 4, Supplementary Figure 2). The transcript abundance was
calculated by estimating the fragments per kilobase of exon per mil-
lion mapped fragments (FPKM)43, and all expressed transcripts were
binned on the basis of their abundance (FPKM). This analysis
revealed that the majority of the assembled transcripts were low
in abundance, i.e., below 1 FPKM (Supplementary Method, Sup-
plement Table 5, and Supplementary Figure 3–8). In parallel, the
transcripts from all the 17 breast cancer samples were also reas-
sembled using another reference genome (UCSC hg19), and similar
transcript expression trends as described above were observed
(Supplementary Table 4B).

The overall abundances (FPKM) of commonly expressed tran-
scripts on each chromosome were compared between the three
groups. The TNBC group exhibited higher transcript expression levels
on chromosome 6 compared with the Non-TNBC and HER2-positive
breast cancer types (Figure 2B, Supplementary Figure 9). Frequent
gains in chromosome 6p have been shown to be associated with
poor prognosis in several cancers44, including invasive ductal carcin-
oma45,46. In general, the transcript abundance was higher in TNBC
than in the other two groups. However, the overall number of tran-
scripts and their expression profile in all three cancers followed a
similar trend (Supplementary Figure 2).

Clustering based on transcript expression profile. We examined
the correlation between the samples based on transcript and gene
expression using Principle Component Analysis. Similar to initial
immunohistochemistry and q-PCR classification, most of the
samples from each breast cancer group clustered together in our
analysis, except for a few outliers (sample A3 in TNBC, sample B4
in Non-TNBC, and samples C1 and C5 in HER2 group) (Figure 2C).
To further explore the pairwise relationship, we calculated the
Spearman’s correlation, which ranks and quantifies the degree of
similarity between each pair of samples (Supplementary Table 6).
The results indicated variation between individual samples but no
distinct outliers (Figure 2D). However, the transcript expression-
based correlation showed more variation within the groups than
the gene expression-based correlation (Supplementary Table 6 and
Supplementary Figure 10A). In agreement with the PCA analysis, the
average linkage distance matrix analyses and pairwise cuffdiff
analysis also highlighted three distinct groups and similar outliers,
i.e., A3, B4 (and also B6) and C5 (Supplementary Table 7, Sup-
plementary Figure 10B and 11, Supplementary Method43). Toge-
ther, these analyses illustrate the variation in individual transcript
expression levels, which is possibly due to a large number of low
abundance transcripts in all of the samples, a phenomenon
generally observed in RNA sequencing data studies47.

Defining the transcriptomic signatures of TNBC, Non-TNBC
and HER2-positive breast cancer. To determine the differentially
expressed genes and transcripts between the three breast cancer
groups, univariate F-tests were performed (Supplementary Method,
Figures 3, 3A and, Supplementary Figures 12 to 15). We identified
2617 transcripts that were differentially expressed between the TNBC
and Non-TNBC groups (Figure 3B) (Supporting Files 1 and 2).
Among the identified transcripts, 962 transcripts exhibited higher
abundance (upregulated) in the TNBC group and 1655 manifested
lower relative abundance (downregulated) in the non-TNBC group.
When the TNBC group was compared with the HER2-positive
group (Figure 3C), 3087 transcripts were identified as differentially
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Figure 1 | The comparative transcriptomic profiling of TNBC, Non-TNBC and HER2-positive breast cancer mRNA sequencing. (A) Overview of the

steps involved in the mRNA sequencing analysis of TNBC, Non-TNBC and HER2-positive breast cancers. (B) The mRNA reads were mapped to the

Ensembl GRCh37.62 B human genome (hg19), and the summary of the alignment statistics of the fragments mapping onto the reference genome is

presented in different colours. (C) The distribution of the fragments onto the Ensembl GRCh37.62 B human genome (hg19) is shown as the percentage of

reads that map onto exons, introns, intergenic regions and junctions. (D) The total number of exons assembled from the aligned reads in each sample.

www.nature.com/scientificreports
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Figure 2 | The overall transcriptomic expression profile of TNBC, non-TNBC and HER2-positive breast cancers and correlation between the breast
cancers. (A) The transcriptomic expression profiles are shown in the Circos plot. The expression profile of the transcripts with FPKM (i.e., the transcript

abundance measured by cufflinks using Ensembl GRCh37.62 B human genome (hg19)) of up to 200 in all six samples of the three breast cancer types was

visualised in Circos48 for the (C) TNBC, (D) Non-TNBC (ER/PR and HER2-positive) and (E) HER2-positive (ER/PR negative) breast cancer types. The

expression profile of each sample is represented as a single circle, and the FPKM of the individual transcripts are depicted as peaks. The order of the

transcript expression profile samples is from the inner circle to the outside, as depicted by the direction of the arrow and the labels. The total number of

transcripts (above FPKM 0.01) in each sample is provided in brackets next to the sample label. The abundance of an individual transcript is depicted as a

peak. The expression of transcripts in several genomic loci appears similar; however, individual variations are evident at specific loci within each group.

(B) The relative transcript abundance, calculated from the commonly (only transcripts expressed in all 17 samples) expressed transcripts in the three

groups, shows that TNBC expressed a higher abundance of transcripts on chromosome 6. (C) PCA plots showing the clustering of the TNBC (magenta),

Non-TNBC (Red) and HER2-positive (green) breast cancer samples based on the transcriptomic expression profiles. (D) The heat map of the pairwise

correlation between all of the samples based on the Spearman correlation coefficient, which ranks and quantifies the degree of similarity between each pair

of samples.

www.nature.com/scientificreports
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Figure 3 | Differential transcript expression between TNBC, Non-TNBC and HER2-positive cancers. (A) The number of statistically significant

differentially expressed transcripts identified from the F-test. Volcano plots show the differential expression of the statistically significant transcripts (p

value less than 0.05 and FDR 0.05) between (B) TNBC vs. Non-TNBC (C) TNBC vs. HER2-positive and (D) Non-TNBC vs. HER2 positive pairwise

comparisons. The Circos plots show statistically significant differences in transcript expression from the above univariate F-test between (E) TNBC vs.

Non-TNBC (F) TNBC vs. HER2-positive and (G) Non-TNBC vs. HER2- positive breast cancers. The top hundred transcripts as determined by the p-

value are labelled on the Circos plot. The stacked histograms represent the abundance (FPKM) associated with each sample for that specific differentially

expressed transcript. The TNBC group samples A1 to A6 are coloured in red, orange, yellow, green blue and purple. The Non-TNBC group samples B1 to

B6 are coloured in red, blue, green, purple, orange, yellow and the HER2-positive group samples C1 to C6 are coloured in green, orange, blue, magenta,

sea green, and yellow.

www.nature.com/scientificreports
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expressed (Supporting Files 3 and 4). Among these transcripts, 2416
were upregulated in TNBC. The Non-TNBC and the HER2-positive
group comparison revealed 2971 transcripts (Figure 3C, Supporting
Files 5 and 6) that were differentially expressed, and 2509 transcripts
were upregulated in Non-TNBC. The comparative analyses of these
three breast cancer subtypes at the isoform and gene level (Supple-
mentary Figure 15, Supporting Files 7 to 9) provide a complete view
of the global transcriptomic changes between the three groups. The
distribution and abundance of the top one hundred (determined by p
value) differentially expressed transcripts from the aforementioned
three comparisons are shown as stacked histograms using Circos
plots48 (Figures 3D, 3E and 3F).

Furthermore, the differential transcript expressions that occurred
in more than one comparison were separated from the ‘‘bona-fide’’
transcripts that were specific to one comparison, i.e., the transcripts
specific for TNBC vs. Non-TNBC (1000 transcripts, 945 genes),
TNBC vs. HER2-positive (1316 transcripts, 885 genes) and Non-
TNBC vs. HER2-positive (1011 transcripts, 763 genes) (Supporting
Files 10–12). Interestingly, 78 transcripts, including oncogenic Ras
family member, RAB21, and TMEM219, were expressed differenti-
ally in all three comparisons and consequently qualified to be com-
mon breast cancer modulators (Supporting File 13).

We next compared the new transcript atlases between the three
groups with the previously reported breast cancer-associated targets
derived from Online Mendelian Inheritance in Man (OMIM) data-
base. About 3 to 6% of the known targets were represented in our
dataset, highlighting new isoforms that were identified in this study
(Supporting Excel File 14). Notably, the reduced expression of all
three receptors in the TNBC group and high abundance of the three
isoforms in the HER2 group were observed in all five samples of
HER2-positive cancer samples (Figures 4A, 4B and 4C). These obser-
vations indicate the accuracy of the mRNA sequencing-based tran-
script reconstruction and abundance calculation.

Common transcriptional regulatory elements in TNBC, Non-
TNBC and HER2-positive breast cancer. Several critical regula-
tory elements, such as splicing, and different promoter usage have
been established to be the major components that contribute to
transcriptional dynamics49. From the assembled transcripts and
their abundances, the transcriptional and post-transcriptional
dynamics of the genes can be deciphered. The difference in the
expression of various isoforms of a given gene reflects the post-
transcriptional regulation, whereas the relative abundances of the
primary transcripts and the genomic loci comprising the highest
number of primary transcripts indicate transcriptional regulatory
elements. The comprehensive transcriptome analysis using cuffdiff
allowed us to estimate the number of primary transcripts in each
breast cancer group. The primary transcript group in this study was
defined as the group of transcripts that share the same Transcription
Start Site (TSS). Typically, each TSS group comprised several specific
isoforms that originated from a particular TSS. The TSS group
relative abundances were estimated from the sum of the FPKMs of
all of the isoforms belonging to an individual primary transcript. We
first investigated the common high confidence primary transcripts
and their abundances and associated genes in each breast cancer
group (Supporting Files 19 to 21).

Surprisingly, the six most abundant primary transcripts were com-
mon among all three breast cancer groups (Figure 4D). These prim-
ary transcript pools appear highly active in generating abundant
isoforms in breast cancer. These transcripts encode genes including
secreted protein acidic and rich in cysteine (osteonectin, SPARC),
guanine nucleotide binding protein beta polypeptide 2-like 1
(RACK1 or GNB2L), calnexin (CANX), ferritin L subunit (FTL),
calreticulin (CALR) and beta-2 microglobulin (B2M). In each prim-
ary transcript group, only selected isoforms were preferentially
expressed at high abundance, possibly because of their functional

role. The top six primary transcripts have been reported to be critical
players in breast cancer because of their roles in extracellular matrix
remodelling and cell motility. For instance, the cell surface proteins
SPARC, RACK1, B2M, and FTL are well associated with breast can-
cer50–53. In addition, B2M, FTL, and RACK1 are reported to be
tumour prognostic markers52–54. Calnexin and calreticulin, which
promote the correct folding of proteins that enter the secretory path-
way, have also been linked to the breast cancer metastatic pheno-
type55. More interestingly, the highly abundant primary transcripts
identified in normal breast tissue (DNAJB1, SCGB2A2, MUCL1,
SCGB1D2 and ACTG1) were different from those in the three breast
cancer groups (Supporting File 22). Thus, our study identifies a
primary transcript group that is breast cancer-specific and could
therefore provide potential common markers upon validation in a
larger sample set.

Furthermore, the variation in abundances of isoforms originating
from the same primary transcript is exemplified by the primary
SPARC transcripts. All of the eight known SPARC isoforms that
were expressed in the breast cancer samples (Figure 4E) originate
from five different primary transcripts (Figure 4F shown as TSSI to
TSSV). Interestingly, the highly abundant transcript from the prim-
ary transcript group I of SPARC, ENST00000520687, is defined as a
non-expressed protein in the hg19 reference genome, but the abund-
ance of that specific isoform was high in our samples of all three
breast cancer types (Figures 4E and 4F). In primary transcript group
III, the SPARC splice variant 5 (ENST00000521569) expresses
79% to 86% whereas SPARC splice variant 8 (ENST00000538026)
expresses 13.8 to 20% out of total SPARC gene expression in all three
breast cancers. These results reveal that the ENST00000521569 iso-
form of SPARC is most highly expressed in all three breast cancers.

Furthermore, some highly abundant primary transcript pools
were unique to each of the breast cancer subtypes (Figure 4D). For
example, the primary transcript abundance of apolipoprotein E
(APOE) was high in the TNBC and Non-TNBC groups but not
in the HER2-positive group. In the case of the HER2-positive
group, primary transcripts for protein phosphatase 1B (PP1B) and
ornithine decarboxylase antizyme 1 (OAZ1) were highly abundant
and unique to this group compared with the other two groups. From
this primary transcript analysis, we could unravel the transcriptional
dynamics to the finer details, i.e., the expression and significance of
the specific primary transcript pools and the precise isoforms that are
abundant in specific breast cancer type.

‘‘Genomic Hotspots’’: the genomic loci enriched in primary
transcripts are identical in all three groups. Next, we searched
for the genomic loci that are enriched in primary transcripts, i.e.
the ‘‘genomic hotspots’’, in each type of breast cancer analysed in
this study. These genomic regions containing highly abundant
primary transcripts could steer the cellular machinery towards
oncogenic processes through predominant splicing. Surprisingly,
the top eight ‘‘genomic hotspots’’ that produced the highest
number of primary transcripts are common in TNBC, Non-TNBC
and HER2-positive breast cancers. They are presented in Figure 5A,
along with the number of protein-coding genes that are encoded
from one of these loci (Supporting Files 23, 24 and 25 comprising
the top 20 genomic hotspots). For example, the genomic locus that
has the highest primary transcript enrichment, Chr5: 139781398–
140099052, encodes 12 genes (Figure 5B), including HRAS, HRAS2,
SLC35A4 and NDUFA2. The expression levels of these genes,
calculated as the sum of all of the isoforms associated with the
genes in all 17 samples, are presented in Figure 5C. These findings
clearly illustrate that these loci are highly transcriptionally active
and participate in robust splicing to produce several isoforms.
These loci are strikingly different from the normal breast tissue
(Supporting File 26).

www.nature.com/scientificreports
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Figure 4 | The top five highly abundant primary transcripts are common in all three breast cancers. The transcript expression profiles of all expressed

isoforms of (A) the Progesterone receptor, (B) the Oestrogen receptor and (C) the Human epidermal growth factor receptor 2 in all 17 samples. (D) The

table presents the six most common highly abundant primary transcripts and all of the associated information derived from the cuffdiff and cufflinks

analyses. The bottom four lines of the table show the primary transcript expression profiles specific for the TNBC and Non-TNBC (APOE) and HER2-

positive (FN1, PP1B and OAZ1) groups. However, the primary transcript abundance of FN1, PP1B and OAZ1 indicates that they are among the ten most

highly expressed primary transcripts within each group. (E) The exon model of all of the nine isoforms that belong to SPARC. The exons are shown as

coloured blocks, and the introns are shown as dotted lines. (F) The broken pie chart shown in the middle represents the relative abundance of the SPARC

primary transcript groups in the TNBC (inner circle), Non-TNBC (the middle circle) and HER2-positive (the outer circle) breast cancer groups. The five

commonly expressed SPARC primary transcripts are labelled as TSS1 to TSS5. Their relative abundances are represented by different colours, and the

relative expression levels as percentages are indicated on the circle. The expression of specific isoforms and the changes in abundance are indicated for

primary transcript groups II and III. The lime (on the top left) and salmon (bottom right) coloured arrows point to the isoforms that originate from the

TSSII and TSSIII primary transcripts, respectively. The relative abundances of isoforms that belong to TSSII and TSSIII in TNBC, Non-TNBC and HER2-

positive cancers are presented as pie chart in shades of colours similar to their primary transcripts. The bar chart shows the abundance of the all of the

SPARC isoforms estimated by cufflinks.

www.nature.com/scientificreports
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Figure 5 | The ‘‘genomic hotspots’’, the highly spliced loci in all three cancers are conserved, and experimental validation by RT-qPCR confirms the
accuracy of the analysis. (A) The genomic loci that comprise the highest numbers of primary transcripts in TNBC, Non-TNBC and HER2-positive breast

cancers, along with the number of primary transcripts identified from these loci and the number of genes encoded in all seventeen samples, are presented

in a table. The separate panel shows the genes associated with genomic loci chr5:139781398–140099052, which encodes the largest number of genes in all

three breast cancers. (B) The abundance of genes (FPKM) that belong to genomic loci chr5:139781398–140099052 was estimated by cufflinks in all 17

samples. (C) A comparison of the RT-qPCR and RNA sequence expression analysis. The isoforms differentially expressed at statistically significant levels

were selected randomly from the TNBC vs. Non-TNBC, TNBC vs. HER2-positive and Non-TNBC vs. HER2-positive pairwise comparisons. RT-qPCR of

the isoforms in all of the samples from the pairwise comparisons was performed. The average fold change was calculated from the mean of the

experimentally calculated mRNA levels of the isoform within one group divided by the levels in the other. Supporting Document S23 presents the

individual RT-qPCR validation bar chart for each isoform in all of the tested samples. For the RNA sequencing analysis, the average fold change was

calculated from the mean FPKM of the isoform in all samples in one group divided by the mean FPKM of the other.

www.nature.com/scientificreports
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Novel intronic predominance highlights common new transcripts
in TNBC, Non-TNBC and HER2-positive breast cancer. Apart
from the known transcripts, we also investigated the significance of
intronic reads found in all three types of breast cancer. We compared
the read distribution in publicly available single normal tissue against
all 17 breast cancer samples. This comparison allowed us to
investigate whether the phenomena were found in the breast tissue
or specific to the cancer samples. In the normal breast tissue sample,
80% of the reads mapped to exons while 16% and 0.1% of reads
corresponded to introns and intergenic regions, respectively. These
results indicate that the intronic predominance was specific to the
cancer samples, possibly because of intron retention and splicing
modifications. Further, close inspection of this phenomenon
revealed the expression of intronic regions in several annotated
transcripts. The normal breast tissue comprises 10,337 defined
exons in the place of introns in known transcripts (high confident
transcripts with FPKM above 0.1). In contrast, an average of 96,215
exons, i.e., ,10-fold more novel exons, were found within introns in
the cancer tissue samples (Supplementary Table 8). Furthermore, the
number of annotated transcripts comprising these exons in normal
tissue was 1211. In contrast, an average of 15,142 known transcripts
were found to encompass exons in the place of introns in cancer
tissues. When we compared these novel transcripts against the EST
(Expressed Sequence Tags) database, we found that about 93–97% of
the transcripts mapped to similar locations as reported for ESTs.
Therefore, these exons may be expressed in the three breast cancer
types. Moreover, within each breast cancer group, there were a
few hundred common transcripts (Supplementary Table 8 and
Supporting Files 15 to 17) that underwent such changes as well as
78 common transcripts in all three breast cancer groups (Supporting
File 18). Given these described predominant modifications in several
transcripts, it is not surprising that we found a high intronic read
count in these samples when compared with hg19.

Novel intergenic unannotated transcripts in the breast cancer
transcriptome. In addition to introns, the intergenic region also
appears to comprise an average of 24,540 exons that could
assemble into high confidence, previously unknown transcripts in
all of the breast cancer samples. Several (average 723) unannotated
transcripts (with FPKM above 0.1) could be assembled from reads
that were recovered from the intergenic region of each sample, which
indicates the existence of possible new transcripts in breast cancer
conditions (Supplementary Table 8). Notably, some transcripts
comprised more than one exon, but the singletons were the
predominantly identified transcripts (Supplementary Table 9). A
similar phenomenon was found in normal breast tissue. Therefore,
these previously unknown transcriptional changes identified in this
study reveal several new elements that occur specifically in breast
cancer. However, future mRNA sequencing of several normal breast
and other tissue samples are needed to establish the breast tissue
specificity of the alterations of these newly discovered transcripts.

Identifying common critical pathways in breast cancer. The
pathway analysis was performed using the identified differentially
expressed transcripts obtained from the TNBC vs. Non-TNBC,
TNBC vs. HER2-positive and Non-TNBC vs. HER2-positive com-
parisons. In all three pairwise comparisons, cell motility, develop-
ment, apoptosis and cancer-related signalling pathways are
influenced, that highlights the common critical functions that are
‘‘hijacked’’ in breast cancer (Supplementary Figures 16 to 21).
Moreover, the differentially expressed transcripts identified in
the TNBC vs. Non-TNBC comparison are also involved in small
GTPase-mediated signal transduction, proteosomal ubiquitin-
dependent protein catabolism, negative regulation of apoptosis,
cytoskeleton protein binding and oxidoreductase activity (Supple-
mentary Figures 16 and 17). The transcripts that were differentially
expressed in the Non-TNBC vs. HER2-positive comparison appear

to affect the regulation of mammary gland and epithelial pro-
liferation, apoptotic mitochondrial changes, mitotic cell cycle,
cell division and enzymatic activity (Supplementary Figure 18).
Furthermore, canonical pathways, such as oncostatin M signalling,
PI3K/MAPK signalling and functional pathways involving cancer,
cell cycle and cell death, are influenced by all three groups of
differentially expressed transcripts (TNBC vs. Non-TNBC, TNBC
vs. HER2-positive and Non-TNBC vs. HER2-positive) (Supple-
mentary Figures 19, 20 and 21). In contrast, oestrogen receptor
signalling, cellular growth and modification are specifically modu-
lated by transcripts that arise from the Non-TNBC vs. HER2-positive
differential expression comparison (Supplementary Figure 21). In
summary, this analysis highlights the prevalence of breast cancer
signalling-associated pathways that are commonly influenced in all
three subtypes analysed here.

qRT-PCR validation of the mRNA sequencing analysis. The
mRNA sequence analysis was validated by experimental confir-
mation of the levels of differentially expressed transcripts in
TNBC, Non-TNBC and HER2-positive samples. We used qRT-
PCR to validate the expression levels of 28 transcripts (randomly
selected across all the three bins shown in Supplementary Figures 3
to 8). The transcripts were selected from pairwise differential ex-
pression comparisons of all of the samples of the relevant group
(Supplementary Methods). We observed a high correlation and a
similar expression trend between the mRNA-sequence based
abundance estimation (FPKM) and qRT-PCR assays revealing the
accuracy of the analysis (Figure 5C and Supporting File with primers
27, Supporting File 28 shows individual RT qPCR data of all the
transcripts that were validated).

Discussion
For the first time, we report the transcriptional and post-transcrip-
tional profiling of TNBC, Non-TNBC and HER2-positive breast
cancers using a deep mRNA sequencing approach (35, 36). In breast
cancer, microarrays have been extensively used for molecular sub-
typing and identification of breast cancer-specific gene signatures.
Although mRNA sequencing covers the total transcript expression
compared with the preselected microarray approach, which focuses
on specific gene sets, we compared our mRNA sequencing-based
differentially expressed transcripts against the previously reported
gene signatures of TNBC, Non-TNBC and HER2-positive breast
cancer. When the signature gene lists from Perou et al., 200019,
Sorlie et al., 200120,56, Hu et al., 200657 and Parker et al., 200926 were
compared, only few overlapping genes were identified (Supple-
mentary Method and Supplementary Table 12), because these stud-
ies classify the samples on the basis of five intrinsic subtypes and
identify genes that are modulated in all the five subtypes from a
preselected gene set. In contrast, our mRNA sequencing captures
all the expressed transcripts which are ,75,000 transcripts per sam-
ple compared to the preselected gene sets of microarray platform.
Moreover, this study classifies the samples on the basis of receptor
status. Therefore the differentially expressing transcripts from this
study will be different to the previously identified gene signatures of
microarray. However, we performed parallel comparative microar-
ray analyses using publicly available datasets for which the receptor
status can be derived (Supplementary Method and Supplementary
Table 10, 11 and Supplementary Figure 22). The results (Supple-
mentary Table 11 and Supporting file 29 to 31) show several genes
overlapping and 90 to 100% agreement in the expression trend of
genes that were identified in common in the abovementioned pair-
wise comparisons (e.g., TNBC vs. Non-TNBC) in the microarray and
mRNA sequencing. Although mRNA sequencing identifies prev-
iously reported breast cancer modulators as well as several new
players, further many larger scale mRNA sequencing studies will
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be needed to draw firm conclusions on mRNA-seq based gene sig-
natures.

Compared with the microarray approach, the emerging mRNA
sequencing-centred technology41,58,59 allows us to de-convolute the
transcriptional and post-transcriptional elements of breast cancer at
a higher resolution. The fundamental theme that emerges from this
detailed mRNA-Seq analysis is the similarity observed at the tran-
scriptional level (i.e., primary transcripts and abundantly splicing
genomic hotspots), which differs from the heterogeneity in post-
transcriptional isoform levels. This heterogeneity appears to be
mainly due to post-transcriptional regulation that fine-tunes the
splicing and abundances of various isoforms specific for each cancer.
This notion is supported by the identified primary transcript pool of
SPARC, GNB2L1, CANX, CALR and B2M, which have been proven
to be significant players in breast cancer onset and progression by
modulating cell migration, motility, anti-apoptosis and cellular stress
management50,60–62. In fact, two of the highly abundant primary tran-
scripts, B2M and FTL, have also been confirmed to be markers of
cancer progression and thus raise new therapeutic possibilities that
could arise from this study. To achieve the final frontier of using the
transcriptomic data in clinical settings, it will also be important to
design a prospective analysis involving a larger series of patient
cohorts.

Methods
Human Patient Samples. Dr. Suzanne Fuqua (Baylor College of Medicine) provided
the human breast cancer tissue RNA samples. All of the human samples were used in
accordance with the IRB procedures of Baylor College of Medicine. The breast
tumour types, TNBC, Non-TNBC and HER2-positive, were classified on the basis of
immunohistochemical and RT-qPCR classification (data not shown).

Illumina Genome sequencing RNA sequencing library preparation. Enrichment of
rRNA-free transcriptome RNA: Whole transcriptome RNA was extracted from total
RNA by removing large and small ribosomal RNA (rRNA) using RiboMinus
Eukaryote Kit (Invitrogen, Carlsbad, CA). Five micrograms of total RNA was
hybridised to rRNA-specific biotin labelled probes at 70uC for 5 minutes. The rRNA-
probe complexes were then removed by streptavidin-coated magnetic beads. The
rRNA-free transcriptome RNA was concentrated by ethanol precipitation.

cDNA synthesis and DNA library construction from transcriptome RNA. cDNA
was synthesised from the isolated RNAas described in the supplementary method.
Double-stranded cDNA was treated with a mix of T4 DNA polymerase, Klenow large
fragment and T4 polynucleotide kinase to create blunt-ended DNA, to which a single
A base was subsequently added at the 39 end using Klenow fragment (39 to 59 exo-)
and dATP. The A-tailed DNA was ligated with paired end adaptors using T4 DNA
ligase, provided by the Illumina RNA-Seq kit (Illumina, San Diego, CA). Size selection
(200 base pair) of the adaptor ligated DNA was performed by cutting the target
fragment out of a 4–12% acrylamide gel. The amplified DNA library containing ideal
fragment sizes was obtained by in-gel PCR using the Phusion High-Fidelity system
(New England Biolabs). Each library that was prepared was sequenced, and image
analysis and base calling were performed with Illumina pipeline version 1.3.2.

Read alignment and transcript assembly. We have aligned the pair end reads using
TopHat version 1.1.442, allowing two mismatches in the alignment. The aligned reads
were assembled into transcripts using cufflinks43. The alignment quality and
distribution of the reads were estimated using SAMtools63, and the PCA plot and
sample clustering were performed using (imported genes and transcript expression
profiles generated from cufflinks assembled transcripts that were identical to the
reference) the Avadis NGS program.

The cuffcompare program was used to identify the transcripts that were identical to
the reference human genome for further analysis. To examine differential expression
of genes/transcripts between the three groups of samples belonging to the three
different subtypes of breast cancer, we first performed cuffcompare and cuffdiff43.

The high confidence transcripts associated with FPKMs above 0.01 in all of the
samples were isolated. Next, we calculated the average expression of an individual
gene/transcript from the FPKMs obtained using cufflinks. The samples were arranged
in groups without preference to the order within the group. The geometric averages of
the FPKMs were calculated for each group of samples. The values were not calculated
using a reference. Next, univariate F-tests were performed (after log2 conversion of
the transcript expression abundance, FPKM) between the three groups, using a p
value cut off of 0.05 a false discovery rate below 0.05, with statistical package R.
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